Skip to main content

PC ports explained: Get to know the back of your computer

Almost any modern communication need can be handled with a wireless solution. File transfers, streaming video, peripheral connections — all of these can be accomplished without a physical connection. Yet ports persist. Take a gander at your home office, and you’ll likely find wires of all sorts leading to various connections: USB, HDMI, Thunderbolt, and more.

Physical connections are still the quickest, most reliable way to transfer data. It’s always important to know what cable or plug goes where, and what version of cables you may need to get the most out of your PC. Let’s clear the air and make room for some modern knowledge of old-fashioned connectivity.

USB

The Universal Serial Bus (USB) would make a good role model for supervillains everywhere. It pledged to take over the world. Then it did so. It took well over a decade, but it happened. FireWire is basically obsolete. External SATA is nearly extinct. Only Thunderbolt may provide a serious challenge — but it’s years away from widespread adoption.

USB ports come in an array of shapes, though the most common are USB-A and USB-C. USB-A is the non-reversible, oblong connector with right-angle corners, while USB-C is the newer, reversible alternative with rounded corners. Both can operate at different speeds, depending on the generation of USB technology that they support. USB 2.0 is the slowest typically found today, at just 480Mbps.

Image of a USB 3 SuperSpeed port.
miguelangelortega/Getty Images

USB 3.0 ports, officially now known as USB 3.2 gen 1 (we know, it’s confusing), are often USB-A type and are blue to make them more distinct from USB 2.0 and other ports. USB 3.2 Gen 1 ports can operate at up to 5,000Mbps, or 5Gbps.

Image of blue USB Ports.
wavemovies/Getty Images

USB 3.1 (officially USB 3.2 Gen 2) is faster still, operating at up to 10Gbps, while USB 3.2 (officially 3.2 Gen 2×2) can operate at up to 20Gbps in select circumstances.

You need to plug a compatible USB 3.x device into a compatible USB 3.x port to take full advantage of its generational speeds. USB is entirely backward compatible, but you’re limited by the speed of the oldest generation in the chain of devices and connectors.

USB 4.0, now officially known as USB4, is also on the horizon, and though it likely won’t be any faster than USB 3.2 2×2, it will unify standards to make the naming scheme less confusing and improve device compatibility. Device manufacturers will have the option of offering Thunderbolt 3 inter-compatibility.

Thunderbolt

Thunderbolt is a new type of connection that was developed by Intel under the codename Light Peak. As that name suggests, Thunderbolt was initially intended to be a fiber-optic connection capable of 10Gbit/s (nearly twice the bandwidth of USB 3.0). Still, Intel engineers figured out how to accomplish this goal using only copper wire. This made Thunderbolt less expensive and gave it the ability to deliver power, a critical trait for any connection that dreams of widespread adoption.

The current common generation, Thunderbolt 3.0, uses the USB-C physical interface and is capable of data transfer speeds of 40Gbps. This connection also doubles as a DisplayPort 1.2-compatible A/V connection. It’s possible to daisy-chain up to seven different devices (both displays and peripherals) off one Thunderbolt port, though there are limitations based on the types of devices connected.

Image of Thunderbolt cable.
PansLaos/Getty Images

You can use Thunderbolt to connect to any USB device, display, or Thunderbolt product, and it’s proved to be competitive with USB technology thanks to its speed and versatility. However, USB 4.0 could incorporate Thunderbolt technology, so we may see the standards unified in the future.

Apple was the first to include it on production PCs. Other manufacturers are beginning to follow this lead, but only on high-end products. Even if you do have the port, there’s not much to connect to it besides DisplayPort-compatible monitors and a small (but growing) selection of external hard drives.

Image used with permission by copyright holder

Thunderbolt 3 is set to be replaced by the new Thunderbolt 4, which will remain a proprietary connection that will face off directly against USB4. Thunderbolt 4 is very similar to Thunderbolt 3, but updates minimum video requirements and improves caps on upper-limit data speeds. It also makes it a bit easier for manufacturers to include Thunderbolt ports on their devices, allowing accessories with additional ports.

DisplayPort

DisplayPort was one of two A/V connections (the other being HDMI) developed in the middle of the last decade. This connection was developed specifically with computer monitors in mind and is meant to be the full-digital replacement for DVI.

Image of DisplayPort cable and port
Pornphol/Getty Images

On paper, DisplayPort is a technical masterpiece. It combines video and audio in a single connection and offers far more bandwidth than HDMI in comparable generations. DisplayPort 1.2 was capable of handling 4K connections at 60Hz in 2010, while HDMI was struggling to even manage 30Hz. Today, the most capable DisplayPort is version 2.0, with a maximum data rate of up to 77.3GB per second at max capacity, enough for multiple 4K monitors on a single connection or up to a single 16K display with compression enabled. Like its sibling, Thunderbolt, DisplayPort allows for daisy-chain configurations.

HDMI

The High Definition Multimedia Interface (HDMI) began production in 2003 as a replacement to all earlier A/V connections. It was built to be a do-it-all cable, combining uncompressed audio and video for maximum picture quality. To that end, it massively succeeded, becoming the most common connection for PCs and game consoles the world over.

This connection can handle audio and video with one cable. Better still, the connector is thin and flat, making HDMI great for laptops and other small systems.

Image of HDMI port.
MyImages_Micha/Getty Images

Despite being technically inferior to DisplayPort in some ways, HDMI is more than adequate for most users. It’s a simple, easy plug that can handle high display resolutions. Its downsides, such as the inability to daisy-chain and shorter cable lengths, usually aren’t a concern. The most recent generation, HDMI 2.1, also made great strides in closing the performance gap with DisplayPort, making new generation HDMI 2.1 devices more than capable of handling high resolution and refresh rate content.

Ethernet

Wi-Fi might be the most popular way to get online, but for better speed and reliability, Ethernet is still king. This simple connector, which looks a bit like a phone jack, has served the needs of networks for three decades.

VisualField/Getty Images

Ethernet is most often used to connect to the internet, but it won’t make your connection to it any faster if you have decent Wi-Fi. What it can do, though, is make your local network data transfers far quicker, with support on some devices for up to 10Gbit.

Ethernet is more reliable, too, making it easier to get a connection on the other side of thick walls or when there are a number of other Wi-Fi networks crowding your airwaves. It’s also more private. It’s much harder to snoop on an Ethernet connection than a wireless one.

Today’s Ethernet cables are typically known as Gigabit Ethernet, which means they are rated for at least 1Gbps speeds (and often much higher). Ethernet cables are divided by Cat or Category type, so when you look for them you will see options like Cat 6, Cat 6a, Cat 7, etc. Ethernet standards got a little confusing around Cat 6 and Cat7, but these days if you are buying a new Ethernet cable, you should stick with the latest Cat 8 standard, a shielded cable with max speeds of up to 40Gbps over 30 meters, and max bandwidth of 2000MHz.

Editors' Recommendations

Matthew S. Smith
Matthew S. Smith is the former Lead Editor, Reviews at Digital Trends. He previously guided the Products Team, which dives…
The Vision Pro is already in trouble. Here’s how Apple can turn the tide
A man wears an Apple Vision Pro headset.

Apple’s Vision Pro headset lit the world on fire when it was announced at the Worldwide Developers Conference (WWDC) in June 2023, and again when it launched in February of this year. But in the months since, it’s apparently been losing steam, with sales down and people staying away from in-store demonstrations. That doesn’t bode well for Apple’s “next big thing.”

The key question, though, is whether this an actual problem for Apple. And if so, what can the company do about it?
In free fall?
If you read Bloomberg journalist Mark Gurman’s latest Power On newsletter, you’ll see some concerning reporting, at least from Apple’s perspective. Citing staff at Apple’s retail stores, Gurman claims that “Demand for [Vision Pro] demos is way down. People who do book appointments often don’t show up.”

Read more
Buying a Steam Deck has never been cheaper
Steam Deck over a pink background.

Valve is serving up huge price cuts on the Steam Deck, but there's a catch -- the consoles are refurbished. Part of the Certified Refurbished Steam Deck program, these handhelds have been fixed up by Valve to reportedly run like new -- and they're significantly cheaper. You can save up to $90, but is this too good to be true? It doesn't have to be.

Buying refurbished devices and hardware can be scary, but when the goodies come directly from the manufacturer, it becomes less risky. This is the case with Valve, which is now selling all three models of the LCD Steam Deck, refurbished and at a price cut. If this sounds good, you can now grab the base model for $279 instead of $349 ($70 savings), while the 256GB NVMe model costs $319 instead of $399 when purchased new. Lastly, the top handheld in the lineup with 512GB of storage costs just $359 instead of $449, which is $90 in savings.

Read more
Alienware m16 R2 vs. Alienware x16 R2: Which 16-inch model is better?
The Alienware x16 and m18 open on a table.

Alienware is known for making top-tier, high-end gaming laptops, albeit at a premium price point. With its 2024 lineup finally taking shape, customers now have the option of choosing between two 16-inch models -- the m16 R2 and the x16 R2. While the former has been completely redesigned, the new x16 R2 opts for a similar design to last year's model.

There are certain similarities on paper, like the new Intel CPU options and the QHD+ display, but both laptops are quite different when stacked up against each other. Here's a detailed comparison between the two.
Specifications

Read more