Home > Cool Tech > Everything you need to know about the Large Hadron…

Everything you need to know about the Large Hadron Collider

Deep under the border of Switzerland and France, a massive ring-shaped installation blasts particles into one another at incredible speeds. Scientists observe these collisions, allowing them to observe the impossibly small particles — which essentially make up the very fabric of reality — for an infinitesimal moment of time. This enormous structure is known as the Large Hadron Collider (LHC), and has provided physicists with incredible insights into the physical makeup of our universe.

That said, it also seems like every headline regarding the LHC threatens to either overturn the current model of physics, or open a world-ending tear in inter-dimensional space-time. Given just how information (and misinformation, for that matter) is out there about the particle collider, we’ve put together this simple yet exhaustive guide outlining everything you might want to know about it.

What is the Large Hadron Collider?

lhc_long_1

The Large Hadron Collider was constructed between 1998 and 2008 and began its first operational run on November 20, 2009, following a year-long delay due to an incident where an electrical fault resulted in several tons of liquid helium coolant being vented into the tunnel. The massive project cost a staggering $9 billion to construct, making it the most expensive machine ever built.

Like the name suggests, the LHC smashes beams of tiny particles such as hadrons — i.e. small particles made of even smaller subatomic particles known as quarks — into each other at ultra-high speeds. These particle beams are launched with about 13 teraelectronvolts (TeV) of combined energy, resulting in unbelievably dense particles that are about 1,000,000 times hotter than the Sun’s core. This is one of the many reasons the structure is housed underground, and why it’s cooled to 1.9 degrees Kelvin, or nearly 1.9 degrees above absolute zero.

Those aren’t the only impressive numbers associated with the LHC, though.

Throughout the 17-mile loop, some 1,600 magnets curve and direct the beams around the massive tunnel and into one another. The magnets are made up of tiny strands of coiled copper-coated niobium-titanium, which — if unraveled — would reach to the Sun and back five times over, with enough left over to wrap around the moon and back a few times as well.

All that magnetic material helps accelerate the particle beams to super-high speeds just shy of the speed of light. When they collide at such speeds, the tiny particles explode into subatomic particles, crashing and bouncing off one another in a high-energy environment that’s similar to the conditions of the universe at the time of the Big Bang. Within these explosions, researchers search for new clues into how the universe works.

In order to collect and analyze the vast amounts of data produced by the LHC, a global network of 170 computing centers spread over 36 countries crunches tens of petabytes of data every year. The network grid is so large it currently holds the Guinness World Record for the largest distributed computer grid on Earth.

1 of 4