Skip to main content

Astronauts traveling to Mars may be permanently damaging their brains

mars cosmic radiation brain damage nasa rover feat
Image used with permission by copyright holder
From no gravity to difficult repairs, astronauts in deep space must deal with a host of problems that challenge their mental and physical strength. And this list just got longer thanks to a new study that suggests these deep space missions can cause brain damage that persists even when the space traveler returns back to Earth.

A new study by a team of radiation oncologists and neurobiologists from the University of California, Irvine, and the Eastern Virginia Medical School paint a potentially troubling picture for astronauts hoping to make the trip to Mars. Working with adult male Wistar rats, the team discovered that long-term exposure to cosmic radiation affected the ability of the rodents to perform basic tasks, such as distinguishing between a familiar object and a newly introduced object.

These behavioral and cognitive issues were linked to physical changes in the brain, including the modification of the neurons and a breakdown in the integrity of the synapses that control the transfer of neurotransmitters between the neurons.

Not only were these effects seen in the presence of cosmic radiation, but they also persisted for more than six months after the radiation exposure was over. Laboratory examination of the irradiated rats showed both a decrease in synaptic integrity and an increase neuronal in inflammation which influenced both learning and memory.

These long-term changes appeared to be permanent with no observed attempt by the body to repair or regenerate the damaged brain components. This negative effect on the brain was most pronounced at acute levels of cosmic radiation exposure but was also recorded at low dosages. In these low-dose trials, the cognitive effects of radiation, though less severe,  still were detectable at both 12 weeks and 24 weeks after the initial exposure.

So what does this mean for potential Martian astronauts? A lot. Even though the study uses a rat model, the scientists conducting the research believe a human brain would respond in the same negative way as the rat brains in the study. “The most logical conclusion to draw from these studies is that cosmic radiation exposure poses a real and potentially detrimental neurocognitive risk for prolonged deep space travel,” write the researchers in an article recently published in Nature.

Though the results are concerning, they should not put an end to the Mars missions, argues University of California Neurobiologist Charles Limoli. “This is not a deal-breaker,” said Limoli to Popular Science. “I do not think that during a trip to Mars and back the astronauts will come back with anything remotely similar to full-blown Alzheimer’s.

But more mild changes, more subtle changes — they would still be concerning, given the level of autonomy astronauts operate under and the amount of work they have to do.” Due to the seriousness of the effect, NASA and other agencies planning for a journey to Mars may have to develop creative ways of protecting astronauts from cosmic radiation, either through the use of cutting-edge shielding or by administering a drug cocktail that reverses these negative effects on the brain.

Editors' Recommendations

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
Could there be underground lakes on Mars’s southern pole?
The bright white region of this image shows the icy cap that covers Mars’ south pole, composed of frozen water and frozen carbon dioxide. ESA’s Mars Express imaged this area of Mars on Dec. 17, 2012, in infrared, green and blue light, using its High Resolution Stereo Camera.

The bright white region of this image shows the icy cap that covers Mars’ south pole, composed of frozen water and frozen carbon dioxide. ESA’s Mars Express imaged this area of Mars on Dec. 17, 2012, in infrared, green, and blue light, using its High Resolution Stereo Camera. ESA/DLR/FU Berlin/Bill Dunford

The question of how to access water on Mars is a big one if we eventually want to send a crewed mission there. As far as we can tell, Mars doesn't have liquid water on its surface now, but it does have large amounts of ice at its poles as well as subsurface ice in other regions. Locating exactly where this subsurface ice is and how accessible it is is a major question to be answered by the upcoming Mars Ice Mapper mission.

Read more
NASA’s Ingenuity helicopter travels 160 meters in 8th Mars flight
NASA's Ingenuity helicopter.

NASA’s Mars helicopter, Ingenuity, has completed its eighth flight over the Martian surface as the team continues to explore how the aircraft can assist future space missions.

“Another successful flight for Ingenuity!” the team at NASA’s Jet Propulsion Laboratory (JPL), which is overseeing the current Mars mission, said in a tweet on Tuesday. The message also included an image of the helicopter’s shadow as it passed over the ground during its flight earlier this week.

Read more
NASA’s Mars helicopter wins prestigious space exploration award
NASA's Ingenuity helicopter.

The team behind NASA’s Mars helicopter, Ingenuity, has won this year’s John L. “Jack” Swigert Jr. Award for Space Exploration from the Space Foundation. The prestigious annual prize recognizes extraordinary accomplishments in the realm of space exploration and discovery.

The Jet Propulsion Laboratory (JPL), which is conducting NASA's current Mars mission, announced the news in a tweet on Tuesday, June 15.

Read more