Skip to main content

The sporty EV: A look at the fun side of zero-emission motoring

Nissan Leaf Nismo RC

Some say the electric car will save the world, others say it will tie humanity to electrical sockets like a pack of caged animals. Either way, carmakers, the government, and consumers are giving the EV a try. That being the case, why not have a little fun with them?

Today’s practical midsize sedans and crossovers are shadowed by sports cars, sports sedans, hot hatchbacks, and other cars that emphasize speed and the joy of driving. Electric cars are slowly proving that they can be practical, but can they be fun to drive too?

Related Videos

Tesla Roadster red rear three quarterFast EVs

Electric cars have only been available in large quantities for a few years, but there have already been a few attempts to make them sporty. Speed, after all,  is a good way to counteract the EV’s reputation as a nerdy eco-car.

Nissan is known for injecting a bit of sportiness into nearly everything it makes, so it’s not surprising that the Japanese carmaker tried the same with its Leaf EV.

The 2011 Leaf Nismo RC definitely looks fast. If you want your performance car to be taken seriously, flaring out the body and adding a huge rear spoiler is a good way to start. However, under the racy bodywork, Nissan kept the stock Leaf’s 107 horsepower motor.

The Model S is seriously quick, but it also behaves better in corners. With only 53 percent of its weight over the rear axle, the five-door Tesla has been more to most road testers’ liking.

Stock motor aside, the Nismo RC is lighter (2,050 pounds versus 3,291 pounds for a stock 2013 Leaf S) and has rear-wheel drive. That allows it to do 0 to 60 mph in 6.8 seconds, over four seconds faster than the stock Leaf. However, a limited top speed of 95 mph puts the brakes on the fun.

A car like the Nismo RC was obviously never going to go into production, and the Leaf Nismo people actually can buy isn’t as interesting. Changes for the production Leaf Nismo due out this summer are limited to 18-inch wheels and an aerodynamic body kit.

The Tesla Roadster was a much better attempt at a performance EV. Tesla Motors’ first car — and the world’s only production electric sports car to date — the Roadster was based on one of the best gasoline-powered sports cars around, the Lotus Elise.

It’s electric motor (with 288 horsepower and 295 pound-feet of torque in the final 2.5 Sport model) also made the Roadster quick: in a Motor Trend test, a 2010 Roadster 2.0 Sport hit 60 mph in 3.7 seconds, thanks to the motor’s literally instantaneous torque. Unlike internal combustion engines, electric motors produce all of their power from zero rpm, so there’s no need to wait for revs to build.

The Roadster wasn’t all good, though. Its top speed was electronically limited to 125 mph, and the software also prevented it from doing burnouts (admittedly, not the worst thing in the world). Things also got a little less nice when the driver turned the steering wheel.

Tesla Model S black drivingWhen being wired isn’t a good thing

Like many performance hybrids, the Tesla Roadster suffered from the unholy trinity of low rolling resistance tires, regenerative brakes, and electric power steering. They numbed the feedback from the road, making the Roadster less than satisfying in the bends.

Adding to the problem was the way the Roadster’s battery pack upset weight distribution. With 65 percent of its weight over the rear axle, it behaved like an early Porsche 911.

The Model S appears to be a competent electric sports sedan, but why stop there? What would it take to build a pure performance EV?

“It’s lithe and darty through corners, but at the extreme limit of its grip, the steering turns slack under acceleration as the front axle goes light and loses its bite,” Car and Driver said in a December 2009 test.

Luckily, it’s not impossible to overcome this problem. For its clean sheet Model S, Tesla mounted the batteries in the floor, (it’s only four inches thick) lowering the center of gravity and distributing the weight more evenly.

The Model S is seriously quick, but it also behaves better in corners. With only 53 percent of its weight over the rear axle, the five-door Tesla has been more to most road testers’ liking.

The Model S’ regenerative brakes are also controlled by the accelerator, not the brake pedal; lifting off activates regeneration. As counterintuitive as that may seem, it actually helps the brakes feel less jarring because the driver isn’t using two systems (one hydraulic, one electric) when he or she brakes.

Mercedes-Benz SLS AMG Electric Drive front three-quarter motion viewElectric Utopia?

The Model S appears to be a competent electric sports sedan, but why stop there? What would it take to build a pure performance EV?

Sometimes it takes more money than the average buyers is able to spend in order to bring a new technology to the world of fast driving. That seems to be the case with hybrid performance cars, and it may be why a couple of carmakers have tried to produce electric supercars.

At the 2012 Paris Motor Show, Mercedes-Benz unleashed the SLS AMG Electric Drive, a battery-powered version of its gull-winged sports car. A massive 60-kWh lithium-ion battery pack connected to four electric motors (one for each wheel), which produce a combined 740 hp and 738 lb-ft.

Considering that a stock SLS AMG GT only has 583 hp and 489 lb-ft, it seems like Mercedes might be on to something. The bearers of the three-pointed star say the Electric Drive will do 0 to 62 mph (0 to 100 kph) in 3.9 seconds, and its top speed is electronically limited to 155 mph.

However, that huge battery pack takes three hours to charge with a 22-kW quick charger, and 20 hours with a standard household outlet. The car it’s attached to also costs over $500,000, almost 2.5 times the cost of a regular SLS.

Audi R8 eTron

That might explain why Audi decided to axe its own electric supercar, the R8 e-tron, even after it set a world lap record for electric cars at the Nürburgring. It had two electric motors producing a combined 376 hp and 605 lb-ft.

It’s possible to go even faster. Toyota sent a prototype around the ‘Ring in 7:22, handily beating the Audi’s 8:09. “Fast electric car” is not an oxymoron.

The question is: Are these types of cars feasible? With so many amazing sports cars on the market already, it’s hard to imagine many people paying a big premium, and subjecting themselves to “range anxiety,” just to go fast on volts.

While it’s hard to divine the future of electric performance from the handful of cars we’ve seen so far, they do seem to be following a familiar pattern. Like regular electric cars, the technological challenges of performance EVs don’t seem insurmountable, but they will need to get cheaper and more practical to gain mass acceptance.

Editors' Recommendations

GMC poured all of its truck-making expertise into the Sierra EV pickup
A 2024 GMC Sierra EV towing an Airstream trailer.

The Chevrolet Silverado and GMC Sierra pickup trucks are twins, and that will continue to be the case when they go electric.
Chevy unveiled its Silverado EV at CES 2022, and now it’s GMC’s turn. The 2024 GMC Sierra EV borrows some key features from its Chevy sibling, as well GMC’s first electric truck — the Hummer EV. Some of those features were actually pioneered by General Motors two decades ago on non-electric trucks, and are now making a comeback.
You can reserve a Sierra EV now, but deliveries aren’t scheduled to start until early calendar-year 2024. Production starts with a high-end Denali Edition 1 model, with other versions arriving for the 2025 model year.

The Sierra EV updates the design language of the internal-combustion GMC Sierra for the electric age. A big grille is no longer needed for cooling, but it’s still an important styling element that designers didn’t want to break away from, Sharon Gauci, GMC executive director of global design, explained to Digital Trends and other media in an online briefing ahead of the truck’s reveal. The grille shape is now outlined in lights, with an illuminated GMC logo.
Like the Hummer EV and Silverado EV, the Sierra EV uses GM’s Ultium modular battery architecture which, among other things, means the battery pack is an integral part of the structure. So unlike most other trucks — including the rival Ford F-150 Lightning — the Sierra EV doesn’t have a separate frame. The cab and bed are one piece as well, all of which helps increase structural rigidity.
The Sierra EV also borrows the Midgate setup from the Silverado EV. First seen on the Chevy Avalanche and Cadillac Escalade EXT in the early 2000s, it allows the bulkhead and glass behind the cab to be removed, effectively extending the bed. Combined with the fold-out MultiPro tailgate from the internal-combustion Sierra, it can expand the default 5.0-foot, 11-inch bed length to 10 feet, 10 inches. A frunk (GMC calls it the “eTrunk”) provides covered storage space as well.
Because it’s pitched as a premium vehicle, the Sierra EV gets upscale interior materials like open-pore wood trim and stainless steel speaker grilles for its Bose audio system. But the design itself, with a freestanding portrait touchscreen and rectangular instrument cluster, looks suspiciously similar to the Ford Mustang Mach-E cabin. The touchscreen even has the same big volume knob as the Ford. We hope GMC’s lawyers are ready.

Read more
Check out Spectre, Rolls-Royce’s first all-electric car
Rolls-Royce's Spectre, its first all-electric vehicle.

Rolls-Royce Introduces Spectre: The World's First Ultra-Luxury Electric Super Coupé

Rolls-Royce Motor Cars has taken the wraps off the Spectre, its first all-electric vehicle.

Read more
2023 Mercedes-Benz EQE SUV preview: The EV lineup grows again
Front three quarter view of the 2023 Mercedes-Benz EQE SUV.

As Mercedes-Benz has steadily expanded its EQ range of electric cars, the lineup has become a bit like the late stages of a Tetris game. It’s mostly complete, but with a few gaps still left. And the 2023 Mercedes-Benz EQE SUV is the piece that perfectly fits one of them.
Mercedes recently launched two other electric SUVs at opposite ends of the price spectrum. The EQS SUV is positioned as the lineup’s flagship, while the EQB is the entry-level model. The EQE SUV slots between those two in size and, presumably, price. The latter hasn’t been confirmed yet, and likely won’t be until the EQE SUV’s planned March 2023 on-sale date.

As the name says, the EQE SUV is a utility-vehicle version of the EQE sedan, which will likely beat it to showrooms by a few months. Mercedes did the same thing with the EQS, which is available in both SUV and sedan body styles.
With its tall, upright profile, the EQE SUV definitely looks like a proper SUV compared to the low-slung EQE sedan. Park it next to an EQS SUV, though, and you’ll have to get out a measuring tape to spot the differences.
The EQE SUV is 0.6 inch narrower and 1.2 inches lower than the EQS SUV, but the most significant difference is in length. The EQE SUV is 10.3 inches shorter than the EQS SUV, with a 2.1-inch shorter wheelbase. And while the EQS SUV has three-row seating, the EQE SUV has two rows. Based on our experience with the EQS SUV’s third row, that’s not a big loss.
The interior design theme carries over from other Mercedes EQ models, with an expansive sloping dashboard designed to accommodate many screens, and multicolor ambient lighting that should look pretty dramatic at night. However, leatherette upholstery is standard, rather than real leather, which Mercedes is now spinning as a vegan option.

Read more