Skip to main content

Real-world emissions tests will result in larger engines

Now that the emissions-test-cheating cat is out of the bag, car manufacturers selling to the European market are going to have to use larger engines, according to Reuters.

The previous European emissions testing standard measured carbon dioxide (CO2) and nitrogen oxide (NOx) emissions while running cars on rollers at moderate speeds and temperatures. No hills, no high speed runs, and no jamming on the accelerators meant the engines were not put under the heavier loads that those conditions would entail. The heavy loads bump up the emissions levels, at times dramatically.

Recommended Videos

Following the Volkswagen Group Dieselgate scandal eruption last year, closer scrutiny in Europe revealed other manufacturers had emissions issues as well, particularly with smaller engines. Shrinking engine size to lower emissions was primarily a phenomenon with cars intended for the European market, rather than the U.S. and Asian markets. According to the report, GM, Fiat-Chrysler, and Renault all had emissions that were too high, even though they got through the European emissions testing.

The unacceptably high emissions levels didn’t necessarily mean that other car makers were using cheat devices or software. However, the implication is that manufacturers turned a blind eye on the difference in emissions levels under heavy loads as opposed to the environmentally friendlier levels at the light-to-moderate loads during testing.

“They might be doing OK in the current European test cycle, but in the real world they are not performing,” IHS Automotive analyst Pavan Potluri said. “So there’s actually a bit of ‘upsizing’ going on, particularly in diesel.”

So if smaller engines designed for lower emissions aren’t strong enough for everyday real-world driving, even with power-enhancers like turbochargers, the only answer — at least for internal combustion engines — is to use larger engines. That move, in turn, means a higher base level of emissions to deal with, but if the engines don’t have to strain to get up hills or keep up with traffic, then the disparity between moderate load and heavy load emissions levels should not be as great.

Reuters reported that Renault, General Motors, and VW are all working on larger engines to replace the troubled smaller power plants, for both diesel and gasoline variants. The current heavy emphasis on developing all-electric vehicle technologies has already put pressure on development budgets, but major car makers cannot walk away from the small car market. That means new ICE motors capable of sufficient performance without egregious emissions spewing are needed stat.

Bruce Brown
Bruce Brown Contributing Editor   As a Contributing Editor to the Auto teams at Digital Trends and TheManual.com, Bruce…
The week in EV tech: From sky-high dreams to ground-level drama
tesla robotaxi feud alef in transition flight

Welcome to Digital Trends’ weekly recap of the revolutionary technology powering, connecting, and now driving next-gen electric vehicles. 
Buckle up, folks — this week we’re taking off with a look at the futuristic dream of flying electric cars possibly gliding above U.S. roads sooner than you think. But before we get carried away, let’s bring it back down to the bumpy road of present-day realities.
Even if you’re mostly interested about the tech powering the electric vehicle (EV) revolution, it’s become increasingly hard to avoid the politics around it: You guessed it, we’re talking about this week’s public feud between Tesla CEO Elon Musk and U.S. President Donald Trump.
What does this have to do with EV tech? Well, quite a lot actually. For starters, the technology behind Tesla’s Autopilot and Full-Self Driving (FSD) modes may return in the crosshairs of regulators: Despite the names, these are still driver-assist features that require active driver supervision, and until Trump’s election, they had been under heavy scrutiny by safety regulators for several years.
Last year, the National Highway Traffic Safety Administration  (NHTSA) launched an investigation into 2.4 million Tesla vehicles equipped with FSD. Big questions remain about the driver-assist system's performance under adverse, yet naturally-occurring conditions such as fog, sun glare, rain, and snow.
When Musk, who spent about $275 million to help elect Trump, was appointed to head a newly-created Department of Government Efficiency (DOGE), it raised more than a few eyebrows about his power and influence over the regulators who are supposed to oversee traffic safety, and therefore Tesla.
It didn’t help that the Trump administration followed Musk’s recommendations and relaxed crash-reporting requirements put in place since 2021, while also relaxing rules to accelerate the deployment of fully-automated robotaxis.
The Trump/Musk clash takes place just as Tesla is due to launch its robotaxi pilot progam in Texas later this month. While Trump is now threatening to pull billions of dollars in government subsidies and contracts from Musk’s companies, it’s unclear whether he might pressure the Department of Transportation to again tighten the regulatory screws on Tesla. What is clear is that Trump has never been a fan of electric vehicles and is already trying to end federal subsidies on EV purchases and leases. And while he had made a big deal about buying a bright red Tesla Model S back in March, Trump now says he wants to sell it.
Back to the tech
Meanwhile, Tesla is still required to respond to information and data requests from NHTSA regarding the safety of its robotaxis by July 1. And ultimately, it should come down to the performance of the technology.
For Autopilot and FSD, Tesla has opted for less expensive navigational tech relying on multiple onboard cameras that feed AI machine-learning models. But especially for so-called adverse driving conditions, it’s the more expensive technology relying on a blend of pre-mapped roads, sensors, cameras, radar, and lidar (a laser-light radar) which has received the nod of regulators.
Waymo, the sole robotaxi service currently operating in the U.S., and Zoox, Amazon’s upcoming robotaxi service, both use that blend of navigational tech.
For its robotaxis, Tesla is said to have upped its game in terms of autonomous driving with its Hardware 4 (HW4) technology, which does include radar sensors and promises enhanced environmental perception.
Will that be enough for Tesla to convince regulators, catch up with Waymo, or compete effectively with Zoox?
We’ll have to wait and see.
Flying cars
In a recent edition, we noted that while consumer confidence about robotaxi technology is on the rise, most people also want more data before they hop into a self-driving vehicle.
What about flying taxis? According to a recent survey by Honeywell, nearly all U.S. airline fliers, or 98%, said they would consider using a so-called electric vertical take-off and landing vehicle, or eVTOL, as part of their travel journey.
But while the buzz around flying electric vehicles has mostly focused on air taxis— like Archer Aviation’s Midnight, expected to fly athletes around the 2028 LA Olympics, or Joby’s slick air taxi, backed by Toyota — one California startup is shooting for something a little more... driveable.
Meet Alef Aeronautics, a Bay Area company that wants to put the “car” back in “flying car.” This week, Alef announced it has received over 3,400 pre-orders for its electric flying vehicle, the Model A — and get this: it’s not a futuristic prototype gathering dust in a lab. Alef says production could begin by the end of 2025, or early next year.
On the ground, the Model A operates like a low-speed electric car, complete with hub motors in the wheels and—wait for it—a real steering wheel. You can legally drive it at up to 25 mph on public roads, parking it in a normal garage like any other EV. It’s refreshingly manual in an increasingly hands-free world.
But when it's time for lift off, the steering wheel takes a backseat. For vertical takeoff and flight, the Model A transforms into a drone-like aircraft. Its cabin rotates sideways to create lift, and eight electric rotors—controlled by a flight system and joysticks—take over. No pedals, no yoke, just a bit of joystick magic (or autopilot, if you prefer).
The Model A has already received the nod from regulators for test flights.
While the $300,000 price tag won’t fit everyone’s budget, the company is clearly betting on a future where you don’t have to choose between a car and a flying machine—you can have both.

Read more
8 key things you need to know from Apple’s WWDC 2025 event
From a fresh look and updated names, to new features, more intelligence and live translation
iOS 26, iPadOS 26 and macOS 26 shown on devices.

The WWDC 2025 keynote ran for just over an hour and a half. For those of you who don't fancy sitting through the whole presentation, we've pulled out the key things you need to know from the latest Apple event.

1. Welcome to the 26 club

Read more
Tesla’s robotaxi service is almost here, but it’s not the car you want to see
Silver Tesla Model Y Juniper side

Tesla chief Elon Musk has said that the automaker is aiming to launch its robotaxi service on June 22, in Austin, Texas.

“Tentatively, June 22,” Musk said in a post on X on Tuesday, adding: “We are being super paranoid about safety, so the date could shift.”

Read more