Skip to main content

Ford’s Daytona Prototype racecars head into battle with 3D-printed hardware

While it’s become less relevant to production cars in recent years, racing is still viewed by many as the ultimate crucible for automotive technology.

Ford apparently still thinks so. Over the past few months, it tested a new technology that’s been generating more than its share of buzz in one of the most demanding racing environments in existence.

Recommended Videos

The Blue Oval developed a 3D-printed intake manifold and other parts for the 3.5-liter EcoBoost V6 used in its Tudor United SportsCar Championship Daytona Prototype racers.

These cars – which use a version of the twin-turbocharged EcoBoost engine that reportedly influenced the new Ford GT’s motor – compete in endurance races that can last up to 24 hours. In this type of racing, durability and reliability are just as important as speed, if not more so.

In that respect, the Tudor series seems to make a pretty good testing ground for 3D printing, which has been demonstrated numerous times in automotive applications but hasn’t scaled up to mass production yet.

Local Motors 3D-printed entire car bodies at public shows. while Oak Ride National Laboratory recently printed its own Shelby Cobra replica out of carbon fiber-reinforced plastic.

Ford’s use of 3D printing is a little smaller in scale. The most significant 3D-printed part on the Daytona Prototype EcoBoost engines is an intake manifold, which Ford says weighs less than a part made using conventional methods, and boasts better airflow properties.

It’s also stood up pretty well to the challenges of endurance racing. A car equipped with the 3D-printed manifold won the Rolex 24 at Daytona back in January, while another placed fourth at the Tudor race in Detroit this past weekend.

Ford claims to have purchased the first 3D printer ever made, in 1988. It originally printed prototype buttons, switches, and knobs with the machine.

While the ability of 3D printers to churn out prototype parts relatively quickly is proving handy in some applications, there’s no telling if it will ever make it to mainstream use.

At least there’s now evidence that 3D-printed parts can stand up to some motorsports-level abuse.

Stephen Edelstein
Stephen is a freelance automotive journalist covering all things cars. He likes anything with four wheels, from classic cars…
AMD teases performance of its revolutionary 3D V-cache chip
AMD CEO holding 3D V-Cache CPU.

AMD is currently readying its new Ryzen 7 5800X3D, featuring a 3D V-cache, and it looks like we may soon have a powerful processor on our hands. AMD has teased that we can expect an up to 15% performance boost over the base Ryzen 7 5800X.

The tech giant talked about the new chip during the International Solid-State Circuits Conference (ISSSC) and revealed more information about its architecture. While the Ryzen 7 5800X3D will certainly be an improvement, will it be enough to compete with Intel's best processors?

Read more
AMD’s 3D-stacked Ryzen 7 5800X3D is ‘world’s fastest gaming processor’
AMD CEO presenting new CPU.

The first processor to use a 3D V-Cache technology was announced at the big AMD CES 2022 keynote. The tech was first announced at Computex 2021, and fans have been eagerly awaiting a processor that will put it to use.

That processor is the Ryzen 7 5800X3D, which seems like a strange place to start a new range of processors. AMD has its Ryzen 9 chips, after all. That's because the new Ryzen 7 can outclass AMD's Ryzen 9 5900X while gaming, despite using the same architecture.

Read more
NASA is testing a 3D printer that uses moon dust to print in space
The Redwire Regolith Print facility suite, consisting of Redwire's Additive Manufacturing Facility, and the print heads, plates and lunar regolith simulant feedstock that launches to the International Space Station.

The Redwire Regolith Print facility suite, consisting of Redwire's Additive Manufacturing Facility and the print heads, plates, and lunar regolith simulant feedstock that launches to the International Space Station. Redwire Space

When a Northrop Grumman Cygnus cargo spacecraft arrived at the International Space Station (ISS) this week, it carried a very special piece of equipment from Earth: A 3D printer that uses moon dust to make solid material.

Read more