Skip to main content

As more EVs plug in, can our power grid step up? We ask the experts

how power companies plan to meet electric vehicle charging needs pecanstreetvoltpublic
Image used with permission by copyright holder
Why are we all still killing the electric car? Sure, range anxiety and high up-front costs make customers wary of purchase, along with uncertainty about longevity and usability. Yet beyond the normal and expected consumer caution, there is a steady drumbeat of derision asserting that electric cars are environmentally hazardous, a passing fad, and that the nation’s energy grid can’t handle more than a few EVs out on the road. Why?

Those objections have mostly proven false, and the world now asks when rather than if electric cars will become the norm. Yet as we wend our way to a gas-free world, and consumers get on board the greening, that last question lingers: Are utilities gearing up to meet the new demand for electricity?

What if we all plugged in at once?

Is California dreamin’?

California is the undisputed leader of the United States when it comes to promoting new automotive technology, particularly when it concerns environmental impact. With a huge population sprawled across great distances and historically underdeveloped mass transit capabilities, California has had to take the initiative to control air pollution. California has at times been so far ahead of the rest of the nation that automakers have made models specifically for the Golden State. Now it has a bold plan to encourage large-scale adoption of battery electric and plug-in hybrid vehicles. That plan is closely monitored by governments and automakers worldwide, because as California leads, the rest of the United States soon follows.

California has committed to reducing its greenhouse gas emissions to 80 percent below 1990 levels by the year 2050.

The driving force behind the plan is California’s committment to reduce its greenhouse gas emissions to 80 percent below 1990 levels by the year 2050. Transportation in all its forms accounts for 38 percent of California’s greenhouse gas emissions. Plug-in Hybrid (PHEV) vehicles generally reduce emissions by 60 percent, and Battery Electric Vehicles (BEV) reduce emissions by 85 percent of greenhouse gases and 90 percent of smog-forming emissions.

In 2012, California Governor Jerry Brown issued an executive order creating a goal of 1.5 million Zero Emission Vehicles (ZEVs) to be in use in California by 2025. That was followed up a year later with the California Air Resources Board’s ZEV Action Plan, which details how California plans to achieve its goals and provide the support necessary to keep all those EVs charged and running.

To call it ambitious is an understatement. Consider current sales figures: Americans bought 81,675 plug-in electrics during the first nine months of this year, according to stats gathered by and Michigan market research firm Baum & Associates. And that’s all of America, not just California.

From Pecan Street to your street

Before you write off California’s plan as a fantasy smoked up by Governor Moonbeam, take a look around and you’ll see that automakers and power companies take the issue very seriously. Even if total EV adoptions don’t meet California’s aggressive goals, every automaker is looking at steep Corporate Average Fuel Economy (CAFE) standards that apply nationwide. Electrical utilities are looking at how they’ll manage the additional load – and how they might put a few oil industry dollars in their own pockets in the process.

In the heart of the oil patch, the University of Texas is working with Austin Energy, General Motors, and a host of other public and corporate organizations on Pecan Street, part of the massive 700-acre Mueller community devoted to research on sustainable water and energy issues. Residents of Pecan Street use the latest in smart metering and analysis to help companies and governments learn more about how energy is used. Additionally, the Pecan Street project monitors energy use in over 1,200 homes in Texas, California, and Colorado, and works with utilities to collect data on energy usage. Among the initiatives spawned at Pecan Street, Austin Energy and other companies are looking at residential demand and EV charging capabilities.

“As of July [2015], there were 3,145 registered plug-in electric vehicles in the Austin area. This number is up from just 273 vehicles in 2011,” according to Karl Popham of Austin Energy. “Our current load is about one-third industrial, one-third commercial, and one-third residential. If all transportation switched to electric vehicles, it would be about the equivalent of adding one-third on top of our total current load.”

Electric vehicles and the smart grid

One strident objection to electric vehicles has been that the current power grid in the United States would be strained under a large-scale migration to electric – the one-third increase Popham mentioned. However, research at Pecan Street and other locations is proving that electric cars can be integrated into a smart grid to maximize efficiency and drive energy costs down not only for EV users, but for all power users. “Integrated” is a key term, because the strategy is far more complex than simply plugging in and charging your car.

“Revenue from EV charging exceeds the marginal costs to deliver electricity to the customer, providing positive net revenues.”

“While many stakeholders had concerns during the initial EV launches (pre-2010) on the overall impact to the grid, broader studies by the Electric Power Research Institute as well as regional studies show virtually no concerns with generation and transmission,” says Alex Keros, Manager of Vehicle & Advanced Technology Policy at General Motors. “The question isn’t about the strain, but the network benefits we can design with technology and policies.”

The short version is that by implementing flexibility in charging, automakers and utilities can make the best use of available power resources. For example, solar power generation hits its peak efficiency from 2-4 p.m. each day, and by adding solar generation capacity near charging stations, extra power can be in place to charge EVs connected at workplaces during business hours. That’s important, but it’s a small step because about 80 percent of EV charging happens overnight at the owner’s residence.

To address that overnight demand, smart grids are being developed that begin charging EVs when evening power usage drops, or when electrical rates step down for the night. In both cases, managed charging allows utilities to offer lower pricing for flexible EV charging while avoiding the cost of wholesale upgrades to the grid.

Image used with permission by copyright holder

“Stakeholders now realize deployment of EVs is an asset to the grid and grid planning. First, using tools like time-of-use pricing or demand response, EV assets can be deployed to make the network more efficient, which in turn places downward pressure on rates for all electric utility customers,” Keros told Digital Trends.

In the analysis provided for California’s ZEV Action Plan, the California Public Utility Commission found the same result: “The utility bills EV owners pay more than offset the costs incurred by the utility to deliver the electricity to charge the vehicles. Additional revenue from EV charging exceeds the marginal costs to deliver electricity to the customer, providing positive net revenues.”

The future is networked

Further out, it’s possible EVs will be networked into the grid to use and bank power as needed during peak usage hours in both daytime and evening. Innovations such as Tesla’s Powerwall point the way. The Powerwall is designed to store excess solar power generated during daylight hours for evening and overnight use, or to charge itself from the grid overnight when rates are lowest, and to provide uninterrupted conditioned power even during blackouts and surges. Under a fully networked smart grid, a neighborhood or business district with a substantial EV presence could achieve similar benefits by pulling power from EVs as needed and replacing that energy when conditions are optimal.

“The future of electric vehicle charging will be a marriage of renewable energy and battery storage.”

“In a future world, the energy storage and ancillary services such as frequency regulation offered by the batteries in EVs could really establish significant benefits by avoiding transmission or generation upgrades,” Keros says.

“The future of electric vehicle charging will be a marriage of renewable energy and battery storage as we look to address the intermittency of renewable solar and wind power,” says Rob Threlkeld, General Motors’ Manager of Renewable Energy.

Towards that end, GM has provided priority access to Chevrolet Volts to Pecan Street residents, and OnStar has provided access to the Volts’ charging interfaces to the Pecan Street consortium. The Pecan Street community is currently the largest concentration of Chevrolet Volt owners in the world. The partnership between GM and Pecan Street is helping to create a number of grid-relieving solutions, including charging only with renewable energyenergy demand response, time-of-use-rates, and home energy management.

“We are moving our lab demonstrations into the real world,” says Nick Pudar, OnStar’s Vice President of Strategy and Business Development. “We’re gathering information from families’ vehicles throughout this community to find out the direct impact the Volt has on the grid and how to get drivers the lowest-possible charging rates. This project will also help us develop future capabilities of the Volt and other plug-in electric vehicles.”

How to learn more

If you have the time and interest, you can check out the reports of the California Electric Transport Coalition in support of the state’s ZEV Action Plan. Two reports on grid impacts and benefits of widespread EV adoption total almost 200 pages of research and analysis.

Beyond that, you can read more about the whole Pecan Street sustainability project here.

Jeff Zurschmeide
Jeff Zurschmeide is a freelance writer from Portland, Oregon. Jeff covers new cars, motor sports, and technical topics for a…
EVs may produce more emissions during manufacturing, but they quickly catch up
european cars getting bigger engines emissions car pollution smog

Electric vehicles are here in full force, and while they're still more expensive than their gas-powered counterparts, prices are slowly, but surely coming down. In fact, EVs are likely to be just as affordable as internal combustion engine (ICE) vehicles in the next few years. But like anything, there are pros and cons to buying an EV over an ICE vehicle. For example, on average, it's cheaper to charge an electric vehicle than to fill the gas tank of an ICE vehicle -- not to mention the lower costs of maintenance.

At face value, having a smaller impact on the environment is also a tick in the EV column. But as many have been rightfully pointing out, the impact that EVs have on the environment is a little more complicated than the simple fact that they're not using gasoline and themselves emitting carbon dioxide. For example, what about the emissions involved with manufacturing an electric vehicle compared to a gas-powered vehicle? What about the materials in those huge batteries?

Read more
Used EV prices are falling quicker than those of gas cars, and that’s good
2022 Hyundai Ioniq 5 Limited AWD rear end side profile from driver's side with trees and a metal fence in the back.

Let's face it. Electric vehicles are getting cheaper, but they're still expensive, with so-called "budget" models still costing north of $35,000. That, however, really only accounts for new electric vehicles -- and it turns out that used ones are getting much more affordable. In fact, a new report suggests that the price of used electric vehicles is falling much quicker than that of gas counterparts.

I get it -- the concept can be scary. New EV buyers certainly don't want to find that their shiny electric vehicles are worth so much less after just a few years. But, in the grand scheme of things, this is actually a good thing.
The numbers
The report from iSeeCars notes that while in June 2023, average used EV prices were 25% higher than used gas car prices, by May 2024, used EV prices were 8% lower. That's a pretty dramatic change.

Read more
Bentley Continental GT and GTC Speed get performance boost as plug-in hybrids
Front three quarter view of the new Bentley Continental GT Speed coupe.

A few years ago, Bentley set off on a path to electrification that was paved with plug-in hybrids and added models like the Bentayga Hybrid to its lineup. However, that path was more of a parallel side road, with plug-in hybrids augmenting the lineup rather than replacing traditional gasoline-only models. Now they're heading for the fast lane.

Unveiled Tuesday, the fourth-generation Bentley Continental GT Speed coupe and GTC Speed convertible are the most powerful Bentley road cars ever — and they're plug-in hybrids. These performance models herald a new era for the Continental GT, Bentley's signature vehicle, along with its GTC convertible variant.

Read more