To put a quantum computer on your desk, Intel has a plan unlike any other

The future of computing is quantum — or so headlines would have you believe. They’re not incorrect. Yet like the flying car, quantum computing is a technology that’s as elusive as it is enchanting. A computer that can go beyond the simple, binary 0s and 1s of today’s ‘classical’ designs opens a new world of possibility, but the technical hurdles are massive, and no one knows how long it’ll take to overcome them.

That’s not discouraging researchers, however. Quantum computers have reached an important milestone in recent years and piqued the interest of massive companies. Companies you’ve heard of. Companies like Intel, which has shipped Core processors in hundreds of millions of computers across the globe.

An old dog learning some new tricks

Intel may seem an unlikely choice for innovation in quantum computing. Sure, it’s known for its powerful PC processors, but the company’s expertise is concentrated in classic computers built for the x86 instruction set. Intel’s 8086 chip, the first x86 processor, is nearing its 40th birthday. The fundamental underpinnings of Intel’s modern chips harken back to that now-ancient predecessor.

Jim Clarke, Intel’s Director of Quantum Hardware, explained to Digital Trends that the company will continue to lean on past expertise to drive future research, and quantum computing is no exception. During a visit to Intel’s campus, Clarke pulled out a slick, rainbow-like wafer. It looked a lot like those you’ve seen in the news or Intel’s own ads, but this one was different.

Intel Quantum Computing Holding Wafer
Jim Clarke, Intel’s Director of Quantum Hardware, showing off a wafer. Rich Shibley/Digital Trends

“What you see here is a wafer that comes from our 300-millimeter technology line just a few miles down the Ronler Acres campus,” Clarke told us. “We’re doing this wafer with the same technology that we’re using for our advanced chips. And what you see here are basically small spin qubit arrays.”

That’s the company’s quantum computing effort in a nutshell. It wants to advance the technology, just as does Google and IBM, as well as many universities. But Intel has a different approach. It wants to do it with silicon.

“We’re essentially using the same process lines, same tools, same design rules to do this, and that’s an advantage for Intel.”

“There are a total of, I think, roughly 50000 qubits on this wafer,” Clarke explained. “They’re not coupled together so we can’t use them together. But you see the power of using Intel’s advanced process lines. If we can get this technology working we’re going to be making chips that are the same from wafer to wafer, and we’re going to have lots and lots of qubit arrays on any given wafer.”

What Clarke’s talking about is not just production. He’s talking about mass production.

It’s easy to see why Intel would approach the technology with mass production in mind. It’s the only company among its competitors that makes a bulk of its money directly from processor sales. It’s a self-serving goal, to be sure, but one that gives Intel a unique incentive.

There’s many reasons why Google might want to build quantum computer, but selling quantum chips isn’t high on the list. IBM does sell chips, but only to enterprise customers. Intel’s the only horse in the race that might, one day, seek to sell you a quantum computer.

It’s not a crazy idea. As Clarke made clear, “this is running in the same fab that’s doing the cutting edge Core chips. […] With, I’ll say, some different challenges with making the wafers, we’re essentially using the same process lines, same tools, same design rules to do this, and that’s an advantage for Intel.”

Check my qubits, bro

Alright. Intel is interested in building quantum computers with its traditional, mass-production methods, but does that really mean you’ll have a sweet quantum computer under your desk?

Well…maybe.

The big challenge facing quantum computing is the fragility of qubits. Due to the funky nature of quantum mechanics, it’s incredibly easy to disrupt a qubit’s coherence, which makes the whole thing go wrong. Clarke told us even a bit of heat can do it.

“So, what we do is we operate these systems at very cold temperatures,” he said. “We have these refrigerators called dilution refrigerators that are about the size of a 55-gallon drum. And they can get down to a fraction of a degree above absolute zero. In fact, we would say they are 250 times colder than deep space.” Hardcore PC overclockers might salivate over such a cooler, but don’t get too excited. An Intel Core i7 wouldn’t work at such low temperatures. It’d likely crack or shatter.

“I’ll leave miniaturization for the next generation, but right now I actually don’t think it’s a problem to have a large system.”

These incredible cooling requirements put obvious limitations on how modern quantum processors operate. You can’t just stick a current quantum rig in a home office. Hell, you can’t even stick one in most labs. It’s a highly specialized field that currently requires highly specialized equipment. Miniaturization will help, to be sure, but the massive apparatuses that are used today won’t fit into a desktop tower overnight. Or perhaps even over the next decade.

Yet not everything about a quantum computer is strange. The device still needs short-term memory, long term-storage, and circuit boards that connect various components together. This additional hardware “just is not at the same part of the refrigerator as that as the quantum chip,” Clarke told us. “In fact, a large quantum chip could very well have a small supercomputer next to it, controlling the information into and out of the actual chip.”

In theory, then, a quantum computer might someday end up looking like today’s desktops, though Clarke certainly wasn’t ready to commit to the idea. He reminded us that today’s computers began life as room-sized devices that accepted input only by punch cards and executed instructions on transistors that were (at least) the size of your thumb. That was over 70 years ago, and it’s really only over the last 20 years that PCs slimmed down to the backpackable size we’re used to today.

“If we think about the first Cray supercomputers in the mid-70s they were probably as large as half this room, and these were the most powerful computers on earth at that time. No one would have thought that close to 40 years later we would have miniaturized these, and more, into our back pockets,” Clarke said. “I’ll leave that miniaturization for the next generation, but right now I actually don’t think it’s a problem to have a large system. If that system is the world’s most powerful computer.”

Freaking out about security

The arrival of quantum computing isn’t universally anticipated with eager acceptance, however. Many modern encryption algorithms, like RSA keys, offer protection, because forcing the algorithm would take billions of years for even the most powerful classical computers. Quantum computing, though, is a different story.

“With RSA keys, we take a number that is the product of two large prime numbers, and you can only access the message or the code or the credit card number if you have both of those prime numbers,” Clarke told us. “That’s actually a very hard calculation to do with a classical computer. […] A quantum computer, because it can access such a large space, could conceivably factor these RSA keys in a very very short time, let’s say a minute.”

That’s unsettling to anyone with an eye for security. The NSA began taking steps to harden security against quantum computing in 2015. To make matters worse, Intel has found itself swamped by a swarm of security vulnerabilities in its chips. Processors were once commonly assumed a relative safe-haven. Many even have “secure enclaves” built-in to offer an additional layer of security against hackers looking to hijack the chip.

Now, that clean reputation has been soiled. Both security experts and consumers are beginning to cast a more skeptical eye on hardware. Does that mean a digital doomsday is approaching? Clarke doesn’t think so.

“Within that the types of algorithms and the requirements for a quantum computer that could do cryptography are actually pretty severe, so we’re probably several years beyond that 10-year timeline to have something that would work for cryptography.”

Ten years is a long time for researchers to prepare for quantum computing’s arrival, and encryption techniques impervious to quantum already exist today.

“An example of a technology that would be quantum resistant would be something like the one-time pads used in World War II or by Cold War spies,” Clarke said.

A one-time pad isn’t a magic pill. Figuring out how to easily share it digitally in a timely manner with minimal overhead won’t be easy – but Intel has researchers working on that problem. Clarke seemed hopeful that new encryption methods will be available before quantum computing becomes common enough to threaten modern encryption.

The next generation

It’s still early days in the development of quantum hardware, but the interest of companies like Google, IBM, and Intel are a clear step forward. Clarke thinks that the company’s experience will give Intel the edge in the race. “We are betting that with Intel’s expertise with the Intel architecture, that sort of expertise at the person level, we can bring those people to Quantum and make headway,” said Clarke.

You’ll have to wait to see the results of the company’s efforts, of course. Clarke spoke of time horizons that covered decades, not years or months. Even the development of top-tier classical processors is a long, tiring business that evades easy solution. It’ll be a long time before you see the Intel Inside label slapped on a quantum chip, but it now feels as likely to happen as not.

Mobile

Amazon Japan may be stopping sales of the P30 in response to U.S. Huawei ban

The U.S. Commerce Department has added Huawei to its "Entity List." Google, Intel, and ARM are all confirmed or rumored to be ceasing business with the company, which may have disastrous effects on Huawei.
Computing

The 2019 MacBook Pro is an impressive performance update, but not much else

With increased competition from Windows laptops, Apple could do with refreshing its MacBook Pro line. Fortunately, it looks set to do that in 2019. Here's everything we know so far.
Mobile

Embattled Huawei preps its own backup operating system that runs Android apps

According to a new report, Huawei is developing its own mobile operating system, just in case it loses its access to Android -- something that could happen to ZTE in the near future.
Computing

Apple’s updated MacBook Pro may be twice as fast, but can it handle the gains?

Apple refreshed its MacBook Pro lineup, delivering up two twice the performance improvements. The 15-inch model tops out with an eight-core ninth-generation Intel processor and discrete AMD graphics alongside a slightly tweaked keyboard.
Mobile

Keep your gadgets fully powered with the best Micro USB cables

A lot of older gadgets and Android smartphones still rely on Micro USB cables to charge or transfer data. Check out our picks of the best Micro USB cables, whether you want something reliable, tough, feature-packed, or simple.
Computing

Apple sends out invites for WWDC 2019, and unicorns are involved

Apple developers and fans alike look forward every year to the company's Worldwide Developers Conference, better known as WWDC. Apple has confirmed the conference will take place on June 3-7, and the company just sent out invites.
Computing

The May 2019 update for Windows 10 is live. Here’s how to get your hands on it

Launched this week, Microsoft's May 2019 update for Windows 10 releases a slew of new features, primarily simple and powerful security tools, for home and enterprise users. You can get your hands on these tools by installing the new update…
Computing

AMD's latest Navi graphics cards are incoming. Here's what to expect

AMD's Navi graphics cards could be available as soon as July 2019 — as long as it's not delayed by stock problems. Billed as a successor to Polaris, Navi promises to deliver better performance to consoles like Sony's PlayStation 5.
Computing

AMD or Intel? We take a look at the pros and cons of both processors

When it comes to selecting a CPU for your PC, there's no shortage of chips for you to choose from. With Ryzen, Threadripper, and Core i9 CPUs though, the AMD vs. Intel argument is muddier than ever.
Deals

Dell Memorial Day sale demolishes prices on XPS laptops, 4K TVs, and monitors

The 2019 Memorial Day sales have already begun, and Dell has hit the ground running: The Dell Memorial Day Sale is destroying prices on laptops, TVs, and monitors, with discounts that can save you thousands. Read on to see the best deals.
Deals

Dell drops big savings on Alienware monitors, headsets, and gaming keyboards

Although known for its beefy PCs, Alienware also makes some great gaming accessories. A handful of them are on sale right now, too, so if you're upgrading to an ultrawide monitor or you just need a new mouse and keyboard, check these out.
Computing

One of these monitors will look great next to your new MacBook Pro

Apple doesn't make its beloved Cinema Display monitors anymore, which makes finding the best monitor for the MacBook Pro more difficult. In this guide, we break down some of our favorites and offer something for every size and budget.
Deals

Best Memorial Day sales 2019: Best Buy, Walmart, and Home Depot drop discounts

If you're looking to save big on some shiny new stuff for Memorial Day 2019, we've gathered everything you need to know into one place. Find out where to save the most money before the summer hits its stride.
Computing

Acer’s new Swift and Nitro laptops are now powered by the latest AMD chips

Ahead of Computex, Acer has announced a pair of updates to a couple of its most popular budget laptop lines. Both the Nitro 5 and Swift 3 will now be powered completely by AMD silicon in the form of Ryzen 7 Mobile.