Skip to main content

XeSS is Intel’s answer to Nvidia DLSS, and it has one big advantage

On the heels of the Intel Arc announcement earlier this week, Intel has revealed more details about its upcoming GPUs and the technologies they’ll feature — in particular, XeSS. XeSS is a new supersampling feature on upcoming Intel Arc GPUs, and it looks to combine the best of competing technologies from AMD and Nvidia.

Functionality-wise, XeSS works a lot like Nvidia’s Deep Learning Super Sampling (DLSS). It uses a neural network that has been trained on images of a game to reconstruct details from neighboring pixels, and critically, it leverages previous frames to track motion through a scene. This temporal information is what sets DLSS apart, and now it looks to have a competitor in the form of XeSS.

Intel XeSS quality comparison.
Image used with permission by copyright holder

Intel demoed a scene upscaled from 1080p to 4K, nearly matching the quality of native 4K. The demo was running on an Intel Alchemist graphics card, which is the code name Intel is using for its first-generation Arc products.

Intel claims that XeSS can provide up to a 2x performance increase over native rendering. That sounds great, but Intel didn’t show XeSS running in any games or announce any titles that will support the feature (though Intel said “several” game developers are already engaged with XeSS).

The difference between DLSS and XeSS

XeSS looks functionally similar to DLSS, but it has one key difference. Intel announced that it will release two XeSS modes. One will leverage Intel’s dedicated XMX, or Xe Matrix Extension, cores to handle the artificial intelligence (A.I.) supersampling. That’s similar to how Nvidia leverages its Tensor cores in RTX graphics cards to upscale with DLSS.

The other mode is where things get interesting. It will use DP4a instruction, which is used for A.I. operations on recent Nvidia graphics cards and recent Intel integrated graphics. Intel claims there’s a “smart” performance and quality trade-off for the DP4a version. Regardless, what it means is that XeSS will still work on hardware that doesn’t have XMX cores.

Intel XeSS rendering pipeline demonstration.
Image used with permission by copyright holder

That brings one of the major benefits of AMD’s FidelityFX Super Resolution (FSR) to XeSS. FSR supports just about any graphics card, while DLSS works solely on Nvidia RTX graphics cards. By utilizing two different software development kits (SDKs), Intel is able to bring support for a wide range of hardware while still utilizing A.I.-assisted upscaling on dedicated hardware.

That’s something we wanted to see out of Nvidia following the launch of FSR. XeSS looks like it will provide the best of both worlds, giving users with dedicated hardware a proper A.I.-assisted supersampling tool without restricting the feature to a certain platform. That said, we still need to wait on game support and independent testing to see how it stacks up.

Intel said that the XMX version of the XeSS SDK will be available later this month. The DP4a version will arrive “later this year.” Unfortunately, Intel didn’t provide any more details on the release window for the DP4a version. Regardless of the version, Intel says XeSS can easily fit in existing rendering pipelines.

A look inside Xe HPG

XeSS uses dedicated XMX units to handle the A.I. supersampling, and there are 16 XMX units on each Xe Core. Moving forward, Intel is moving away from the term “execution units,” which defined the number of cores on previous versions of Xe graphics. Instead, it will use “Xe Core” to show what GPUs have inside.

Each Xe Core features 16 XMX units and 16 vector engines, and there are four Xe Cores on each render slice. On the slice, each Xe Core also gets a dedicated ray-tracing unit for DirectX 12 and Vulkan ray tracing, as well as a shared L2 cache. This slice is the building block of cards using the Xe HPG architecture, and Intel is able to add or remove slices to meet performance targets.

Intel Xe HPG render slice model.
Image used with permission by copyright holder

Currently, Intel is able to use eight slices on a graphics card, totaling 32 Xe cores and 512 vector engines. Previously, reports suggested that Intel’s flagship Alchemist card would use 512 execution units, and that still appears to be the case. The only thing different now is the naming.

Overall, Intel says that the Xe HPG architecture provides a 1.5x increase in frequency over Xe LP, as well as a 1.5x increase in performance per watt. These numbers come from Intel’s internal benchmarks, however, so we’ll need to wait until we have some time with a card to draw any conclusions.

Still, our first look at Xe HPG and XeSS is exciting. For decades, Nvidia and AMD have been the only two options for graphics cards. Intel is not only releasing a graphics card for gamers but one that comes with all the fittings modern GPUs need.

We’ll have to wait to see how Alchemist cards perform when they launch, but it would be nice to see a blue wave in a sea that’s been dominated by red and green for too long.

Editors' Recommendations

Jacob Roach
Senior Staff Writer, Computing
Jacob Roach is a writer covering computing and gaming at Digital Trends. After realizing Crysis wouldn't run on a laptop, he…
Intel’s upcoming iGPU might destroy both Nvidia and Apple M2
A render of Intel's H-series mobile processors.

Intel Meteor Lake might not see the light of day on desktops (not anytime soon, at least), but it seems that the mobile chips are going strong.

According to inside sources, laptops equipped with Meteor Lake chips may not even need a discrete graphics card -- the integrated GPU is going to be powerful enough to rival Nvidia's GTX 1650. That's not all, though. It appears that Intel might even be able to compete against Apple's M2 chip, but in a different way.

Read more
It looks like no one is buying Nvidia’s RTX 4070
The RTX 4070 graphics card on a pink background.

Despite some positive reviews, including our own RTX 4070 review, Nvidia's latest graphics card is reportedly seeing poor sales. Only one week after launching, it's being beat by last-gen GPUs on bestseller charts, and reports suggest Nvidia could pause production to keep the price stable.

Wccftech reported that an update posted on the Chinese Board Channel forums says Nvidia could temporarily halt production in order to "maintain a stable price system." It's hard to say if Nvidia will actually pause production or not. Inventory and sales numbers are rarely shared, so it's important to handle a forum post like this with some skepticism.

Read more
Here’s how Intel doubled Arc GPUs’ performance with a simple driver update
intel arc alchemist driver update doubled performance a770 logo respec featured

As newcomers in the world of discrete graphics cards, the best hope for Intel's Arc A770 and A750 was that they wouldn't be terrible. And Intel mostly delivered in raw power, but the two budget-focused GPUs have been lagging in the software department. Over the course of the last few months, Intel has corrected course.

Through a series of driver updates, Intel has delivered close to double the performance in DirectX 9 titles compared to launch, as well as steep upgrades in certain DirectX 11 and DirectX 12 games. I caught up with Intel's Tom Petersen and Omar Faiz to find out how Intel was able to rearchitect its drivers, and more importantly, how it's continuing to drive software revisions in the future.
The driver of your games

Read more