Skip to main content

This artificial muscle is powered just like the real thing, no battery required

Artificial Muscle glucose
The artificial muscle consists of polymer material, into which the researchers have integrated enzymes. A solution of glucose and oxygen in water powers the polymer actuator, in a similar way as biological muscles. Thor Balkhed/Linköping University

Aside from some impressive robotics tech and a synthetic Austrian accent, what’s the most important component for building a real-life Terminator-style cyborg? Artificial muscles, of course! That’s something that scientists from Sweden’s Linköping University have been working toward with an intriguing new research project. Well, sort of.

Tech for Change

Tech improves our lives every day in a million ways beyond simply making things more convenient. Here are the companies and people fighting to make a difference.

We’ve previously covered some innovative artificial muscles. What makes this latest project innovative, however, is the fact that it blurs the line between live organism and robot. It does this by running on glucose and oxygen, just like real biological muscles in the human body. That means, significantly, that no batteries are required. It could one day be used to create implantable “muscles” powered by biomolecules in their surroundings.

“Although artificial muscles have been demonstrated for many years now, using different physical principles to drive the actuators, this is the first time such actuators are driven directly from glucose and oxygen, making them much more similar to mammalian muscles,” Edwin Jager, senior lecturer in Sensor and Actuator Systems at Linköping University, told Digital Trends.

Researchers at Linköping University working in a lab
Linköping University researchers Edwin Jager (left) and Jose Martinez have demonstrated that artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles. Thor Balkhed/Linköping University

The artificial muscle is described more formally as a “polymer actuator.” It’s composed of three layers, with a thin membrane sandwiched between two layers of electroactive polymer. The material on one side of the membrane acquires a positive electrical charge and expels ions, causing it to shrink. While this is happening, the material on the other side picks up a negative electrical charge and gains ions, causing it to expand. This causes the actuator to bend in one direction, much the same way that biological muscles contract.

While this approximate design has been around for some time, what makes this latest demonstration impressive is the fact that it requires no source of voltage to work. It can be powered entirely by immersing the actuator in a solution of glucose in water.

“We envision foremost two application areas,” Jager continued. “[One is] soft microrobotics that can maneuver in the body to deliver a drug cargo or do some minimal invasive surgery. [These could] be powered with glucose from its surroundings, eliminating the need for batteries to drive the microrobots. The other area is autonomously propelled sensor devices for environmental monitoring in lakes and seas. [They could also] harvest the energy needed for their movement from their environment. [However], the latter application would require that we change the enzymes to suit the available biofuels in that environment.”

(No word, then, on building muscular half-man, half-machine robots. But maybe they’re keeping it quiet until it’s ready for launch!)

A paper describing the research was recently published in the journal Advanced Materials.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Like the real thing, this robot ant colony is more than the sum of its parts
robot ant colony switzerland 6720x4480

Ant colonies are pretty amazing things, complete with fascinating hierarchies, roles, and social structures that would put your typical high school to shame. You know what’s cooler than a regular ant colony, though? A robot ant colony -- complete with tiny 10-gram robots that are able to communicate with one another, assign roles among themselves, and work together to complete tasks.

That’s what a team of researchers at Switzerland’s École polytechnique fédérale de Lausanne (EPFL) have developed. While the reconfigurable robots, called Tribots, are individually simple in their structure, together they prove more than the sum of their parts by showcasing the ability to detect and overcome obstacles (a process that includes informing the rest of the group), as well as teaming up to move objects much larger and heavier than themselves.

Read more
Apple’s new Seattle campus may mean big things for Siri, artificial intelligence
Tim Cook WWDC 2019

It sure looks like Apple has big plans for Siri.

Apple plans to hire 2,000 more employees for a new Seattle campus, the company announced Monday. A significant number of those jobs look like they're focused on improving Siri and developing more advanced artificial intelligence.

Read more
Cornell’s lionfish-inspired robot uses artificial blood to stay powered up
lionfish robot artificial blood 0619 fish

There are all sorts of impressive robots which exist in labs around the world. However, many of the most innovative ones have to be tethered to a power source in order to function -- which greatly limits their functionality. Those which don’t have to be tethered must battle against the limitation of short battery life.

A new robot developed by researchers at Cornell University could solve these problems, however. They have built a swimming soft robot, modeled on the lionfish, which contains a pair of electrodes and a circulating liquid electrolyte likened by its creators to a kind of robot blood. This allows it to store up energy for use powering itself during long-duration tasks. The circulating liquid powers pumps in the robot fish’s tail, dorsal and pectoral fins.

Read more