Skip to main content

Let there be light! Online platform lets students do science in real time

The internet is a wonder of the modern world. From a quiet café in Berlin one can explore the bustling streets of Shenzhen, China, the seemingly desolate Australian Outback, and the depths of the Mariana Trench — all while chatting with countless connected people in between. Now, a new prototype project from researchers at Stanford University may bring the beauty of real-time science to students around the world over the web.

“A user can push a button, turn on a light, and see a cell responding.”

Recommended Videos

Dubbed the Biology Cloud Lab, the interactive platform is designed to engage scientists of all ages by letting them remotely control LEDs around communities of light-responsive cells. Although the single-celled organisms (Euglena) depend on light to make energy, they retreat when the light source is too strong. By manipulating the light’s direction and intensity, users can watch the Euglena react in real time and, later, hypothesize about the cells’ behavior.

“Classic microscopy is just passive observation,” Stanford assistant professor of bioengineering and co-lead of the project, Ingmar H. Riedel-Kruse, told Digital Trends. “The Cloud Lab is interactive, i.e. a user can push a button, turn on a light, and see a cell responding. That is a paradigm change, which enables a totally new type of firsthand experience.”

The Biology Cloud Lab has the potential to offer science students a more authentic science experience than today’s massive open online courses (MOOCs), according Riedel-Kruse and Stanford assistant professor of education Paulo Bilkstein, who also leads the project. The lab allows users to perform both controlled and relatively freeform experiments in real time. They can review, analyze, and interpret quantitative data, and export the data to run through simulated models. And to test their results, students and teachers can compare their data to data gathered by professional scientists. “These capabilities make it integrated,” Bilkstein said.

But all these capabilities come at a cost. For one, the researchers had to figure out how to keep the cells stable and responsive in the long term, which they did by developing the systems to automatically monitor themselves and occasionally self-correct for errors so that a properly functioning setup was always available. They also had to keep financial costs down. With the current prototype scaled up, the researchers aim for — and expect — operating costs of less than one cent per experiment.

“Students are enabled to do key components of scientific inquiry that are challenging to deliver.”

In a paper published earlier this month in the journal Nature Biotechnology, the researchers described trials with both Stanford students in a college-level biophysics class and middle schoolers.

“Students were excited and motivated,” said Riedel-Kruse. “Students are enabled to do key components of scientific inquiry that are challenging to deliver, certainly in an online setting. This paper really shows that it can be done from a technical and educational level. Now we want to build on it — integrate the components better and test it with more students and teachers to disseminate it more widely.”

The current prototype deals exclusively with a specific biology experiment but the researchers think tweaks can offer all sorts of scientific experiments. “We plan on other platforms in the future,” said Riedel-Kruse. And he invites others to adopt the approach.

Dyllan Furness
Former Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
The Ioniq 5 is once again eligible for the $7,500 tax credit
2025 Hyundai Ioniq 5

After a brief and confusing absence, the Hyundai Ioniq 5 is once again eligible for the full $7,500 federal tax credit — and this time, it's sticking around (at least for now). So, what happened? Let’s unpack the ride.

The Ioniq 5, a sleek and tech-savvy electric crossover, initially made headlines not just for its design, but for being built at Hyundai’s brand-new Metaplant in Georgia. That domestic assembly qualified it for the EV tax credit under the Inflation Reduction Act (IRA), which requires vehicles to be made in North America with batteries sourced from trade-friendly countries. But early in 2025, the Ioniq 5 vanished from the list. Why? Likely due to its battery packs, which were then still being sourced from SK On’s Hungarian facility.

Read more
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more