Skip to main content

Researchers find a way to create a renewable supply of cancer-fighting T cells

Researchers at the University of California, Los Angeles have made a major advance in the battle against cancer by showing that it’s possible to create mature T cells with important cancer-killing receptors from pluripotent stem cells.

This was achieved by using structures called artificial thymic organoids, which mimic the environment of the thymus, referring to the organ in which T cells develop from blood stem cells.

Recommended Videos

“Using living T cells to kill cancer cells is one of the most exciting areas of cancer treatment,” Christopher Seet, a clinical instructor in the David Geffen School of Medicine at UCLA, told Digital Trends. “The idea here would be to use self-renewing pluripotent stem cells to make unlimited numbers of T cells in the lab, which could be used directly in patients. With certain tweaks, pluripotent stem cells can be genetically engineered to make T cells that would work in any individual. [This] could make T cell immunotherapies cheaper and more widely available. Currently, T cell therapies use a patient’s own T cells and it takes time and great expense to genetically engineer these T cells and give them back to the patient. In some cases, patients may not qualify if they’re too sick, don’t have enough T cells, or the cell quality is not good enough. Faster and cheaper ‘off-the-shelf’ approaches to T cell therapies are badly needed to bring these treatments to more patients.”

This “off-the-shelf” approach could ultimately work to make T cell therapies more accessible, more affordable, and — perhaps most importantly — more effective. There’s still a way to go until this work rolls out to patients, but it is extremely promising.

“Our next goal is to engineer the pluripotent stem cells to make T cells that are suited for treating any individual,” Seet continued. “To do this we need to make sure that the T cells we make are not rejected by a patient’s immune system, and also specifically attack a patient’s tumor cells and not the rest of their body. We can achieve this by engineering these traits in the stem cells, and indeed our goal is to make T cells that not only can be given to any individual, but may function better than T cells from the blood.”

A paper describing the work was recently published in the journal Cell Stem Cell. Other researchers on the work included Gay Crooks and Amélie Montel-Hagen.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Jaguar Land Rover, Nissan hit the brake on shipments to U.S. over tariffs
Range Rover Sport P400e

Jaguar Land Rover (JLR) has announced it will pause shipments of its UK-made cars to the United States this month, while it figures out how to respond to President Donald Trump's 25% tariff on imported cars.

"As we work to address the new trading terms with our business partners, we are taking some short-term actions, including a shipment pause in April, as we develop our mid- to longer-term plans," JLR said in a statement sent to various media.

Read more
DeepSeek readies the next AI disruption with self-improving models
DeepSeek AI chatbot running on an iPhone.

Barely a few months ago, Wall Street’s big bet on generative AI had a moment of reckoning when DeepSeek arrived on the scene. Despite its heavily censored nature, the open source DeepSeek proved that a frontier reasoning AI model doesn’t necessarily require billions of dollars and can be pulled off on modest resources.

It quickly found commercial adoption by giants such as Huawei, Oppo, and Vivo, while the likes of Microsoft, Alibaba, and Tencent quickly gave it a spot on their platforms. Now, the buzzy Chinese company’s next target is self-improving AI models that use a looping judge-reward approach to improve themselves.

Read more
Toyota shifts gears: 15 New EVs and a million cars by 2027
Front three quarter view of the 2023 Toyota bZ4X.

After years of cautiously navigating the electric vehicle (EV) market, Toyota is finally ramping up its commitment to fully electric vehicles.
The Japanese automaker, which has long relied on hybrids, is now planning to develop about 15 fully electric models by 2027, up from five currently. These models will include vehicles under the Toyota and Lexus brands, with production expected to reach 1 million units annually by that year, according to a report from Nikkei.
This strategy marks a significant shift for Toyota, which has thus far remained conservative in its approach to electric cars. The company sold just 140,000 EVs globally in 2024—representing less than 2% of its total global sales. Despite this, Toyota is aiming for a much larger presence in the EV market, targeting approximately 35% of its global production to be electric by the end of the decade.
The Nikkei report suggests the company plans to diversify its production footprint beyond Japan and China and expanding into the U.S., Thailand, and Argentina. This would help mitigate the impact of President Donald Trump’s 25% tariffs on all car imports, as well as reduce delivery times. Toyota is also building a battery plant in North Carolina.
For now, Toyota has only two fully electric vehicles on the U.S. market: The bZ4X  and the Lexus RZ models. The Japanese automaker is expected to introduce new models like the bZ5X and a potential electric version of the popular Tacoma pickup.
Separately, Toyota and Honda, along with South Korea’s Hyundai, all announced on April 4 that they would not be raising prices, at least over the next couple of months, following the imposition of U.S. tariffs. According to a separate Nikkei report, Toyota’s North American division has told its suppliers that it will absorb the extra costs of parts imported from Mexico and Canada. Another 25% for automotive parts imported to the U.S. is slated to come into effect on May 3.

Read more