Skip to main content

In the Year 2020, Part II: Biotechnology and Genetics

Surrogates PosterCheck out Part I and Part III in our series about life in the year 2020.

Nobody delivers profanity better than Bruce Willis. Nobody. Perhaps that’s why he’s seen so much of it in practically every script he’s tackled during the last 20-odd years. We don’t have a final count on the number of F-bombs our man Bruce dropped in his latest flick, Surrogates, but we can say with some authority that a world filled with robotic avatars gone amok would drive anyone to repeated vulgarity.

Recommended Videos

But 2017? Surrogates would have us believe that just eight short years from now, we’ll have retreated to our homes and left the “real” world to synthetically pimped-up alter-egos? Is it conceivable that we, as naturally exploratory human beings, would want to do that? Is it conceivable that such technology would even exist just 3,000 days from now?

Welcome to Part II in our three-part series on life in the year 2020. In Part I, we took a gander at cloud computing and the immediate future of the amazing, shrinking computer. In Part III, we’ll get the down and dirty on transportation, urban planning, and our changing cities. But today, we’ll go all Surrogates on you.

Well, not really, but we will explore forecasts for the branch of science and technology that might one day, in perhaps 2075 or so, take us to the level of quasi-surrogates – biotech. That umbrella covers genetics, genetic engineering, nanotech, and essentially anything that helps us live appreciably longer and better. And that includes what we eat. Many futurists speculate that food, the production of food, and the very design of food will most assuredly see some pretty drastic changes over the next decade – all through the aid of sci-tech.

And although we can tell you right now that a Surrogate-filled world is highly unlikely just 10 years hence – never mind eight – we are pretty sure that folks lucky enough to be born into developed countries will, through technology, reap some rather interesting, rather exciting rewards in the coming century.

Live Forever!

S. Jay Olshansky
S. Jay Olshansky Image used with permission by copyright holder

In 2001, biodemographer S. Jay Olshansky of the University of Illinois at Chicago School of Public Health and Steven Austad, a gerontologist at the University of Idaho, made a little wager. Austad contended that, through biomedical advancements and cloning technology, one or more people already on the planet would live to see the year 2150 – a lifespan of at least 149 years. Whether he himself would live to collect or pay out on that bet is another question all together.

In 2004, celebrated University of Cambridge biogerentologist Aubrey de Grey, a devout anti-aging proponent and believer that aging is merely a disease – and a curable one at that – claimed the first person to live to 1,000 (that’s one thousand) had already been born.

Ray Kurzweil
Ray Kurzweil Image used with permission by copyright holder

In 2007, Ray Kurzweil, a futurist noted for nailing his prognostications, declared that we’d all better start caring for ourselves a bit better. Why? Because, Kurzweil asserted, those who managed to survive even a few more years would witness a massive elongation of lifespans – to the tune of one extra year for every year that passes. Moreover, said Kurzweil, our species would likely achieve immortality before 2030.

With these mind-boggling conjectures in mind, we took the question of human longevity and life betterment in the year 2020 to a panel of three learned men – all of whom are well-versed not only in the concepts of modern science as it applies to the human condition, but also in foretelling what the future might bring because of it.

Aubrey de Grey
Aubrey de Grey Image used with permission by copyright holder

The changes they predicted were somewhat more conservative than Kurzweil, de Gray and even Austad predicted. Though each of our experts concedes we’re well on the way to something much better, they aren’t quite so optimistic on the subject of immediate, large-scale lifespan gains. It would appear that just because nanotechnology is currently so big and busy, just because President Barack Obama is a strong believer in stem cell research, and just because bio- and nanotechnology researchers are now fiddling around with DNA faster than an Itzhak Perlman solo, we’re not going to be truly Godlike for a few years yet.

Ian Pearson is quite succinct. A Chartered Fellow with the Institute of Nanotechnology, founder of Futurizon (www.futurizon.com), and for seventeen years a futurologist with British Telecommunications, Pearson is a believer in infinite life – but certainly not before 2020. “We’re already able to alter genetic codes. We can make tiny, nano-sized machines. And within fifty years, we may be living with a body that’s part machine, a synthetic body. But there are enormous problems with durability at the molecular scale that we’ve yet to conquer,” Pearson says. “My feeling is that we should see two or three years added on in the next decade, and two to three more every decade after that. And most of that will be caused through breakthroughs in cancer research, heart disease, and other common stuff.”

Red Tape

Razib Khan
Razib Khan Image used with permission by copyright holder

Razib Khan, biology and biochemistry degree-holder, regular contributor to ScienceBlogs (http://scienceblogs.com), and founder of the weblog Gene Expression (www.gnxp.com), agrees that a true nano revolution is still some time away. “Many poor countries have life expectancies which are rather high, so it seems that there are diminishing returns on dollars spent on healthcare,” Khan says. “What we need is a paradigm shift. There is, I think, a minority probability that such a shift will happen, and that anti-aging research will achieve a breakthrough and lifespan will go up considerably.” How small is a minority probability? Khan puts a five percent chance on a breakthrough by 2020 that would increase life expectancy by 20 years, and a 95 percent chance that we’re stalled at current life expectancy. His expectation: a one-year gain by then.

Red tape in the biotech industry can also pose a problem, according to Thomas Frey, publisher of the blog FuturistSpeaker.com and executive director and senior futurist at Colorado think-tank The DaVinci Institute. “Advances in the physical world – atoms – are happening at a vastly different pace than advances in the digital world of electrons. Medicine and biotech advances are happening at the slowest pace of all, primarily because of rigorous safety standards.”

Thomas Frey
Thomas Frey Image used with permission by copyright holder

Frey blames a lack of seed capital and income tax for the caustic environment that kills many fledgling technologies in America. “We currently do not have a good system for channeling funding into early stage companies in the U.S. The vast majority of new technologies die before they ever have a chance to evolve, and virtually all new technologies evolve before they reach the marketplace,” says Frey. “As for income tax, our current tax code is the mother of all boat anchors hanging around our necks. It occupies entirely too much intellectual bandwidth and is placing us at a severe competitive disadvantage in the emerging global marketplace. Yet in spite of these two glaring system problems, advances are still being made”

And many of those advances are in the rejuvenation and repair of the human body. Though our experts feel that we may not be able to birth an immortal man or immortalize a previously mortal man in 2020, we certainly should be able to fix much of what ails him.

Active Skin: Pleasurable and Practical

One of the most promising game-changing technologies on the horizon might be the concept of “active skin,” According to Pearson, active skin is essentially an interface to the human nervous system, allowing users to have electronics “printed” on skin surfaces and even through the skin, to capillaries and nerve endings.

Ian Pearson
Ian Pearson Image used with permission by copyright holder

“You could monitor the bloodstream, checking for cholesterol, diabetes, and other diseases – sort of an early warning system,” says Pearson. “My thought was that the big drug companies would love it, because they could personalize medicine delivery. But I think now that they’d rather just use it to monitor the body. They – and we – know a lot about the unhealthy body. They don’t know that much yet about the healthy body.”

And beyond curing diseases or improving health, active skin could be used purely recreationally to elicit pleasure. According to Pearson, active skin could “pick up nerve signals from the nerves and record them, and perhaps re-inject them at a later date, so that we can effectively record and replay a sensation such as cuddling your partner while you’re away.”

Can Our Planet Handle It?

Whether we’re each living two, ten, or twenty years longer in 2020, there will be a lot more people, ignoring for the moment the possibility of catastrophes. The real question, then, may be whether this little blue planet, third from the sun, can support a growing, longer-living population.

Pearson says that shouldn’t be a concern. “If you populated the entire planet to the density of the UK, you’d have 75 billion people,” says Pearson. That’s 10 times that of current global numbers, and approximately seven times that of current estimates for 2020. “Yet there are plenty of open spaces in the UK, and lots of spots where you feel quite alone. So space shouldn’t be a problem.”

Khan contends the Earth’s population may never become large enough to worry about, in part because of genetic and nanotech advancements. “If people live longer, they would put off having kids. Many of them would die in accidents of course, even if we become really risk-averse, which we would. I suspect that we would space out the number of children we have a lot more as well, perhaps having a child early in life, and having another child if the first dies accidentally.”

Earth
Image used with permission by copyright holder

Khan adds that population forecasts have been overblown for decades. “The world population is already slowing in its growth to the point where it will peak somewhat north of 10 billion. I think our current tech could support that easily.” British scholar Thomas Malthus contends that societal improvements inevitably result in population growth, but Khan disagrees. “I generally reject the Malthusian arguments because they’ve been falsified so well over the past two generations. Additionally, United Nations population estimates have routinely overestimated growth since the 1950s. Projections for the year 2000 kept getting revised downward because the fertility crash was not anticipated.”

But what about pollution? Energy? Oil at $500 a barrel? Plagues? Locusts? We’ll deal with at least some of that in Part III of our series, when we focus on transportation and energy, though Pearson has a few words for us now.

Solar Panels

“I truly believe oil will be at $30 a barrel by 2030. The extraction costs will be far too high by then, and we simply won’t need it like we do today. And I’m a great believer in solar power. Over a period of six months, one 1-meter square solar panel in the Sahara will be able to generate the equivalent power of one barrel of oil. The Sahara Desert alone could produce forty times more energy than the entire planet requires.”

Genetically Modified CropsHow Offal!

Food is, of course, a major issue. Yet our experts agree – through advances in genetic crop engineering, more efficient farming, and also a reduced reliance on meat, hunger likely won’t become a global epidemic. Indeed, food production systems might actually benefit the most, at least in the near future, from biotech and genetics research.

Without the red tape and ethical dilemmas surrounding experimentation on humans, the production of meat may benefit from advancements before humans do. “Different organisms process input calories toward different efficiencies. Can you imagine if there was an animal as efficient at getting calories into meat as a chicken, but tasted like beef?” asks Khan. And the results won’t always be pretty. “I hear the Chinese are working on what I like to call ‘meat things,’ basically organisms that take offal (entrails and other animal parts that are generally considered inedible) into their maw, process them into flesh, and discard the waste.”

“There will be modest improvements in standard grain crops through genetic engineering techniques. But I suspect a bigger change might be seen in forms of aquaculture – growing algae to process for food, and fish farming. Fish farming especially will probably have taken off by 2020, we’re almost there with tuna now.”

According to Frey, the ongoing research and development of “smart foods” will radically alter our eating habits and customs. “The future of foods is smart foods,” Frey says. “The food industry will resemble the body’s metabolism. Science will create real-time reactive sensors in our bodies that can read everything from the fluctuation of brainwaves, to micro changes in heartbeats, to gastro-digestive processes, to variations of skin perspiration rates. This constant monitoring of hundreds if not thousands of bodily nuances will bring about healthier food choices and, more importantly, choices tailored specifically to an individual’s needs. The sensors will need to interface with an equally nuanced supply chain to meet the needs of this next generation, hyper-individualized consumer.”

Further on Down the Road

Frey sees 2030, not 2020, as a time when we’ll likely see a quantum shift in our food production and delivery system. “In the home of 2030, a personal monitoring system will generate a grocery list based on the anticipated needs and stated desires of that individual. Food orders will then be placed either automatically, or with as much control as the person desires. The order will go to the local food supplier, who will be in constant communication with regional suppliers, and they will be in constant communication with the food producers. The entire supply chain architecture will be wired to the needs of the end user.”

That means a crop will no longer be truckloads and truckloads of the same thing. “Farmers will become expert at producing ‘jacked-in’ food stocks with countless variations, managed through computerized processes designed to manipulate the end results,” says Frey. “Controls will be exercised along a broad spectrum, from environmental conditions such as light, water, and oxygen levels in the air to genetic manipulation, according to approved safety guidelines.”

“By 2030, a farm or ranch will adopt technologies that leave today’s operations far behind. Ultra-high-tech farms of the future will generate exotic half-plant, half-animal vegetation as well as crystalline plants, air plants, and generic non-species plants designed for post-harvest flavor and nutrient infusions.”

NanotechLearning to Live with Living Longer

A new set of tools for manipulating both our food and ourselves will bring with it a whole bundle of ethical dilemmas. For instance, what complications can we expect when a population eats better, receives personalized medical care on an unprecedented level, reaps the health benefits of nano-scale research, and ultimately lives appreciably longer? When is a person’s condition – either through accident or some other unforeseen circumstance – simply too far gone to reclaim? What of those who harbor criminal attitudes? Can they be re-wired? Can we possibly fill our jails any more than they already are?

Frey points to all of the above and warns, “These may seem like distant concerns, but change is coming – this time, at lightning speed. In the past, advances for cures for even minor diseases moved glacially. From Leeuwenhoek’s invention of the microscope in the late 1600s to Louis Pasteur’s discovery of germs, the great achievement took centuries. Today, breakthroughs are arriving at greater speed, and accelerating to the point where barriers to near immortality are falling daily. We don’t have the luxury of mulling such matters for decades.”


Check out Part I and Part III in our series about life in the year 2020.

Gordon Goble
Former Digital Trends Contributor
Tesla reveals price range for Optimus Gen2, its ‘robot without wheels’
Tesla's 2022 Optimus robot prototype is seen in front of the company logo.

“The future should look like the future”, CEO Elon Musk said at the Tesla "We Robot" special event held in Burbank, California, earlier this week. Sure enough, Tesla’s much-anticipated autonomous robotaxi, the Cybercab, and its large-van counterpart, the Cybervan, seemed straight out of celebrated sci-fi movies. But as the name of the event hinted at, a vision of the future would not be complete without robots: Several of the Optimus Gen 2, Tesla’s latest version of humanoid-like robot, were found serving drinks, holding conversations with guests, and even dancing at the event.Tesla has recently pitched the Optimus as a potential replacement for factory workers in China and elsewhere. Musk previously said he expects the Optimus to start working at Tesla factories in 2025 and to be available to other firms in 2026.
Yet, at the event, the Tesla boss revealed his expanded vision of a household robot that can do “everything you want: Babysit your kid, walk your dog, mow your lawn, get the groceries, just be your friend, serve drinks”.He also gave a closer estimate of the robot’s price tag: Once produced "at scale," Optimus should cost somewhere between $20,000 and $30,000. Musk had previously said the robot’s price would be about half that of a car. 
Staying true to his sci-fi vision, the Tesla CEO referred to Optimus as a cross between R2D2 and C-3PO, the famous droids from the Star Wars film series.
Ever since the first generation of the Optimus was revealed in 2022, Tesla has emphasized the continuity between its cars and the robot. “Everything that we’ve developed for our cars -- the battery power’s electronics, the advanced motor’s gearboxes, the software, the AI inference computer -- it all actually applies to a humanoid robot,” Musk said at the event. “A robot with arms and legs, instead of a robot with wheels.”
Tesla would not be the first to offer a domestic robot on the market. Hyundai-owned Boston Dynamics has already commercialized a home service-type robot called Spot with a hefty price tag of $74,500. BMW and Open AI are backing robots made by Figure, a California-based company. Meanwhile, Nvidia is developing Project GR00T to also deliver humanoid robots.Earlier this year, Goldman Sachs forecast that the annual global market for humanoid robots could reach $38 billion by 2035, with robot shipments of 1.4 million units both for industrial and consumer applications. It also said that robots could become more affordable as their manufacturing cost has been decreasing more than expected -- leading to faster commercialization.

Read more
GM launches PowerBank, a battery that could rival Tesla’s PowerWall
gm launches powerbank a battery that could rival teslas powerwall energy home system bundle

Competition to provide the best energy savings to EV owners is heating up between auto makers.General Motor’s unit GM Energy has just released PowerBank, a stationary energy storage battery pack that gives electric vehicles (EV) owners the ability to store and transfer energy from the electric grid, and allows integration with home solar power equipment.The PowerBank, which comes in 10.6kWh and 17.7kWh battery capacity variants, can power up a home when there is an outage or help offset higher electricity rates during peak demand, GM said. In addition, customers can also use PowerBank to store and use solar energy, supplement the charging of EVs and provide power to a home without an EV being present.GM says that combining two of its 17.7kWh PowerBanks can provide enough energy to power the average American home for up to 20 hours.The PowerBank can be bought as part of two bundles: the GM Energy Storage bundle at $10,999, or the GM Energy Home System bundle at $12,700. The latter includes a bi-directional EV charger that can provide up to 19.2kWh of power. By comparison, Tesla’s energy storage system, PowerWall 3, can store 13.5kWh of energy and has a price tag of $9,300.According to GM Vice President Wade Sheffer, one key advantage of the PowerBank it its “modularity,” which allows for easy integration with existing technology.GM announced in August that it would provide vehicle-to-home (V2H) technology on all its model year 2026 models. It will now also offer vehicle-to-grid (V2G) technology, which can provide additional energy and financial savings.
Energy savings coming from the integration of electric vehicles, solar-powered homes, and energy grids are increasingly at the center of EV manufacturers' offerings.
Nissan, BMW, Ford, and Honda have grouped together to offer the ChargeScape V2G software, which connects EVs to utilities and the power grid. EV owners can receive financial incentives to pause charging during peak demand or sell energy back to the grid.While Tesla has so far backed off from embracing V2G technology, CEO Elon Musk has hinted that V2G tech could be introduced for Tesla vehicles in 2025.

Read more
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more