Skip to main content

MIT has created a filter-free water desalination process that relies on electrical shockwaves

Shock electrodialysis desalination - fracking pond toxic wastewater
Image used with permission by copyright holder
The dwindling availability of potable water for communities around the world has inspired many fresh takes on water purification. An MIT chemical engineering team has developed a new desalination process that separates salt from water using an electrically driven shockwave. Constantly pushing apart pure water molecules and the larger atoms of sodium and chlorine in a single stream of water makes it possible to repurpose salt water and even toxic wastewater for drinking purposes, without the long-term sustainability obstacles of traditional desalination processes.

The technique, known as shock electrodialysis, is unique because it’s a “membraneless separation system”. Traditional desalination processes typically use reverse osmosis or electrodialysis to pull apart water molecules and salt particles on either side of a one-way separation membrane. Filtration systems that require this kind of separation can be extremely ineffective as the membranes become clogged. Even the unclogging solutions proposed for membrane separation systems, like boiling, require large amounts of energy to be expended on a regular basis.

MIT shock electrodialysis desalination demonstration chemistry
Image used with permission by copyright holder

Chemical engineering and mathematics professor Martin Bazant and his team of student researchers use shock electrodialysis to circumvent issues like clogging in a system that, superficially, looks very similar to traditional desalination techniques. Because their system still requires some physical separation of water molecules and salt particles, Bazant and his team use a porous material composed of many tiny glass particles, called a frit. Either membranes or electrodes can be used to surround the system, so that when an electric current is applied, water divides itself into two regions of the stream; one with purified water and one with salt water.

When the electric current applied to the system is strong enough, it generates a shockwave that immediately and precisely divides fresh water from salty water. Even when shock electrodialysis is applied with the membranes surrounding the frit, the water flowing across the surface of the membranes (instead of passing through the membrane) helps to mitigate the issue of clogging over time. However, questions remain as to the amount of energy that would be required to power a system like this when scaled up for real world applications.

The MIT team credits Juan Santiago at Stanford University for first discovering the use of a shockwave to separate salt concentration in water, but Santiago’s discovery wasn’t used for desalination applications until now. Bazant believes that shock electrodialysis could be easily scaled for massive desalination plants or water purification systems. Beyond desalination, the system could also be used to purify the toxic wastewater created by controversial fracking plants, since the electrical current could theoretically be used to sterilize the fluid stream in addition to removing unwanted particles in the water source.

Research into shock electrodialysis so far has proved the theory of the technique and has demonstrated working process models. The next step in bringing shock electrodialsysis to real world desalination and water purification applications will require the design of a system developed specifically for practical testing on that scale. Bazant and his team don’t believe their system will compete with traditional desalination processes at the outset, but he does see the benefit of the alternative treatment system down the line. For example, the minimal infrastructure requirements of the shock electrodialsysis system would make it a portable, inexpensive solution for emergency situations or remote locations where supplies are limited.

Chloe Olewitz
Former Digital Trends Contributor
Chloe is a writer from New York with a passion for technology, travel, and playing devil's advocate. You can find out more…
This bracelet helps you fall asleep faster and sleep longer
woman-in-bed-wearing-twilight-apollo-on-ankle

This content was produced in partnership with Apollo Neuroscience.
Have you been struggling to get the recommended seven hours of sleep? It's always frustrating when you get in bed at a reasonable time, then toss and turn for a hours before you actually sleep. The quality of that sleep is important too. If you're waking up multiple times during the night, you're likely not getting the quality REM cycle sleep that truly rejuvenates your body. If traditional remedies like herbal teas and noise machines just aren't helping, maybe it's time to try a modern solution. Enter the Apollo wearable.

Now we understand being a little skeptical. How can a bracelet on your wrist or ankle affect your sleep patterns? Certainly the answer to a better night's sleep can't be so simple. We considered these same things when we first heard of it. We'll dive deeper into the science behind the Apollo wearable, but suffice it to say that many people have experienced deeper, uninterrupted sleep while wearing one.
A non-conventional approach to better sleep

Read more
The 11 best Father’s Day deals that you can get for Sunday
Data from a workout showing on the screen of the Apple Watch Series 8.

Father's Day is fast approaching and there's still time to buy your beloved Dad a sweet new device to show him how much you love him. That's why we've rounded up the ten best Father's Day tech deals going on right now. There's something for most budgets here, including if you're able to spend a lot on your loved one. Read on while we take you through the highlights and remember to order fast so you don't miss out on the big day.
Samsung Galaxy Tab A8 -- $200, was $230

While it's the Plus version of the Samsung Galaxy Tab A8 that features in our look at the best tablets, the standard variety is still worth checking out. Saving your Dad the need to dig out their laptop or squint at a small phone screen, the Samsung Galaxy Tab A8 offers a large 10.5-inch LCD display and all the useful features you would expect. 128GB of storage means plenty of room for all your Dad's favorite apps as well as games too. A long-lasting battery and fast charging save him the need for a power source too often too.

Read more
The Apollo wearable is proven to help you sleep better (and it’s on sale)
Apollo wearable worn during sleep in bed.

This content was produced in partnership with Apollo Neuro.
Stress, anxiety, and insomnia are all concerning things that just about everyone struggles with at one time or another. Maybe you can sleep, fending off insomnia, but you lack quality sleep and don’t feel rested in the morning. Or, maybe when it’s time to kick back and relax, you just can’t find a way to do so. There are many solutions for these issues, some work, and others don’t, but one unlikely area of support can be found in a modern, smart wearable.

Medicine is the obvious choice, but not everyone prefers to go that route. There is an answer in modern technology or rather a modern wearable device. One such device is the Apollo wearable, which improves sleep and stress relief via touch therapy. According to Apollo Neuro, the company behind the device, which is worn on your ankle, wrist or clipped to your clothing, it sends out waves of vibrations to help your body relax and reduce feelings of stress. It's an interesting new approach to a common problem that has typically been resolved via medicine, therapy, or other more invasive and time-consuming techniques. The way it utilizes those vibrations, uniquely placed and administered, to create a sense of peace, makes us ask, can it really cure what ails us? We’ll dig a little deeper into how it achieves what it does and what methods it’s using to make you feel better.

Read more