Skip to main content

There’s a new way to 3D print graphene, the strongest material on Earth

Virginia Tech, Lawrence Livermore National Laboratory

With its incredible strength and potentially miraculous applications, there is a lot to be enthusiastic about when it comes to graphene. But it’s one thing to show off these possibilities in a lab; another entirely to turn it into something that’s usable in real-world situations. That’s something that researchers from Virginia Tech University and the Lawrence Livermore National Laboratory (LLNL) have been working to change. In the process, they have found a way of combining two of the most promising buzzwords in tech — “graphene” and “3D printing” — to open up a world of new exciting possibilities.

Recommended Videos

“We have been able to achieve 3D graphene aerogels and foams with arbitrary form factors and 3D features,” Xiaoyu “Rayne” Zheng, an assistant professor with the Department of Mechanical Engineering at Virginia Tech, told Digital Trends. “We formulated and printed light-sensitive graphene precursors that is compatible with a desktop SLA printer. This opens up freedom to realize 3D graphene with any topology co-optimized mechanical properties, hierarchical pore sizes, surface areas, [and] conductivities for a host array of applications.”

Regular graphene is a single layer of carbon atoms arranged in a honeycomb-style hexagonal lattice pattern. If graphene is packed, layer on layer, it becomes graphite: A material most commonly used as the “lead” in ordinary pencils. Now we love pencils as much as the next person, but anyone who has ever had a pencil lead snap on them may have a hard time believing this is one of the strongest materials on the planet. That’s because of the way that it is packed together, which fundamentally alters the structure of graphene.

The researchers on this project circumvented that by separating the individual sheets of graphene with air-filled pores, thereby allowing it to maintain its properties. The 3D-printable material that emerges at the end is something called graphene aerogel.

“Graphene aerogels are promising for a number of applications — including energy storage and conversion, catalysis, sorbents, and desalination,” Marcus Worsley, an LLNL researcher on the project, told us. “Recent work has shown some performance improvements for simple 3D-printed structures, but more complex, computer-generated architectures are predicted to be vastly superior. These gains should translate to devices that are more powerful, efficient, and longer lasting. This is the major thrust of our current and future work in this area.”

It may be some time before we are 3D printing with graphene in our home offices, but this still represents an enormous step in that direction.

“With regards to commercialization, we are always happy to work with potential commercial partners to bring our inventions to market,” Worsley continued. A paper describing the work was recently published in the journal Materials Horizon.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Nvidia turns simple text prompts into game-ready 3D models
A colorful collage of images generated by Nvidia's LATTE3D.

Nvidia just unveiled its new generative AI model, dubbed Latte3D, during GTC 2024. Latte3D appears to be ChatGPT on extreme steroids. I's a text-to-3D model that accepts simple, short text prompts and turns them into 3D objects and animals within a second. Much faster than its older counterparts, Latte3D works like a virtual 3D printe that could come in handy for creators across many industries.

Latte3D was made to simplify the creation of 3D models for many types of creators, such as those working on video games, design projects, marketing, or even machine learning and training for robotics. In Nvidia's demo of the model, it appears super simple to use. Following a quick text prompt, the AI generates a 3D model and shortly after finishes it off with much more detail. While the end result is nowhere near as lifelike as OpenAI's Sora, it's not meant to be -- this is a way to speed up creating assets instead of having to build them from the ground up.

Read more
YouTuber claims that this ugly 3D-printed mouse is actually the best for gaming
OptimumTech's Zeromouse alongside a regular mouse.

According to the YouTuber who made it, this 3D-printed mouse is one of the best gaming mice in the world -- but boy, does it look odd. OptimumTech designed the Zeromouse from the ground up by modding a Razer mouse with a 3D-printed shell that made it a lot more lightweight, and reportedly, more ergonomic.

The end result weighs just 25 grams, all thanks to the custom-made lightweight shell. The internals of the mouse belong to the Razer Viper V2 Pro, and OptimumTech doesn't seem to have made any changes to that, but the outside looks drastically different. In all honesty, it kind of looks like what would happen to a regular gaming mouse if you dropped it from three stories up and it fell apart.

Read more
3D printed cheesecake? Inside the culinary quest to make a Star Trek food replicator
a slice of 3D printed cheesecake

Along with jetpacks, holograms, and universal healthcare, one of the great unfilled promises of the Star Trek-style future is the food replicator. Few concepts hold more sway over both the keen foodies always on the lookout for the latest trend in dining and those of us who can barely be bothered to put a frozen pizza in the oven than a box in your home which can create any meal you desire.

You press a button, and the machine whirs and beeps and creates the delicious dish of your choosing, no tedious chopping or marinating or pan-searing required. It’s an idea far too good to be true — but we might be one step closer to this paradisiacal utopia than you think.
How to 3D print a cheesecake
Researchers from Columbia University recently managed to 3D-print a cheesecake, in a process that is exactly as delightful as it sounds. They detailed their discoveries in an article in npj Science of Food, and we spoke to lead author Jonathan Blutinger to learn how they did it.

Read more