Skip to main content

What is artificial intelligence? Here’s everything you need to know

Demystifying artificial intelligence: Everything you need to know about A.I.

 

Crazy singularities, robot rebellions, falling in love with computers: Artificial intelligence conjures up a multitude of wild what-ifs. But in the real world, A.I. involves machine learning, deep learning, and many other programmable capabilities that we’re just beginning to explore. Let’s put the fantasy stuff on hold (at least for now) and talk about real-world A.I. Here’s what it is, how it works, and where it’s going.

Recommended Videos

What is artificial intelligence?

A.I. seeks to process and respond to data much like a human would. That may seem overly broad, but it needs to be: Developers are baking in human-like smarts into a wide variety of applications. Generally, A.I. falls within three categories — which we would note there is still some disagreement as to what the exact definitions are, much less if they’re truly possible.

  • Narrow: Narrow A.I. (sometimes called “weak A.I.”) is where most of humankind’s work so far has been. As its name suggests, it is focused on executing a single task, and interactions with a narrow A.I. are limited. Examples of this are checking weather reports, controlling smart home devices, or giving us answers to general questions that are pulled from a central database (Wikipedia, etc.). Several narrow A.I.s can be strung together to offer a more comprehensive service: Alexa, Google Assistant, Siri, and Cortana are great examples, even current forms of the autonomous car. Narrow A.I. can’t think for itself; this is why sometimes you’ll get a nonsensical answer back — it lacks the ability to understand context.
  • General: General A.I. (or “strong A.I.”) is where we’re headed. Here, A.I. gains the ability to understand context and make judgments based on it. Over time, it learns from experience, is able to make decisions even in times of uncertainty or with no prior available data, use reason, and be creative. Intellectually, these computers operate much like the human brain. So far we’ve not been able to do it, although most believe we might be able to do so sometime this century.
  • Super: In the far distant future, A.I. may become intellectually superior to humans in every way. A.I. robots would be able to think for themselves, attain consciousness, and operate without any human involvement, perhaps at the direction of another A.I. This sounds like some real Skynet-like dystopia complete with the end of humanity as some warn, but it could also be the dawn of an era in innovation that might make previous advancements look pedestrian.

A.I. can also be classified by how it operates, which is particularly important when considering how complex an A.I. system is and its ultimate cost. If a company is creating an A.I. solution, the first question must be, “Will it learn through training or inference?”

  • Training: These A.I.s are designed to learn and improve over time, and adjust their data sets and certain parts of their processes to become more efficient. General and super A.I. platforms will be able to do this, however narrow A.I. typically does not, since the amount of processing power necessary is so great making it quite expensive.
  • Inference: Most narrow A.I.s are designed to look at data and draw conclusions in careful steps, a much cheaper and less computationally expensive method. For example, to answer the question “What was the score of yesterday’s games?” an A.I. might infer, “To answer this question, I must find data for yesterday’s game scores by searching list of reliable sports datasets, I’ll compare that data to favorite teams listed in settings, and report back the scores in audio.” While helpful to the end user, if the response wasn’t exactly what the user was looking for, the A.I. has little ability to adapt on its own over time. A human must get involved to make its responses more relevant.

As we’ve noted earlier, these definitions are only meant as a general guide (this Medium article is a great discussion on what we’ve just talked about), and some may have slightly different descriptions. But there are examples of current A.I. which are worth discussing.

Current forms of A.I.

C2Sense tiny artificial nose sensor
Jan Schnorr/C2Sense
Jan Schnorr/C2Sense

Voice assistants: Siri, Cortana, Alexa, and other voice assistants are growing more common, becoming the “face” of modern A.I. A growing subset here are chatbots, which manage messaging on websites and carry on online conversations.

Translation: This isn’t just about translating language. It’s also about translating objects, pictures, and sounds into data that can then be used in various algorithms.

Predictive systems: These A.I.s look at statistical data and form valuable conclusions for governments, investors, doctors, meteorologists, and nearly every other field where statistics and event prediction prove valuable.

Marketing: These A.I.s analyze buyers and their behavior, then choose tactics, products, and deals that best fit said behavior. There is a lot of crossover between these behind-the-scenes tools and voice assistants at the moment.

Research: Research A.I.s like Iris search through complex documents and studies for specific information, typically at higher speeds than Google’s search engine.

Awareness: These A.I.s watch for and report unusual events when humans can’t have an eye on them. One of the most complex examples of this is theft detection, which reports unusual behavior. A more exciting example, however, is self-driving cars, which use A.I. systems to scan for dangers and choose the appropriate course of action.

Editing software: These basic A.I.s look at pictures or text and locate ways that they could be improved.

Where A.I. is headed

Recently, neural networking expert Charles J. Simon recently opined on our pages about where he thinks A.I. is headed, which we recommend you read. While we won’t cut and paste the entire article here, we’ll point you to one specific section:

Most people look at the limitations of today’s A.I. systems as evidence that AGI [general A.I.] is a long way off.  We beg to differ. A.I. has most of AGI’s needed pieces already in play, they just don’t work together very well — yet.

This is a key point. As we’ve noted, A.I. is getting better — at least perceptually — by the fact that developers are stringing together several narrow A.I. platforms. But the platforms don’t talk with each other. For example, while Alexa might now be able to start your car, it can’t use the current weather conditions to adjust your car’s heater or air conditioning systems or start the defroster to make sure you’re ready to go as soon as you get in. But Simon argues that we may have the computational and developmental capability either already and don’t know it yet, or within the next decade.

Companies are spending massive amounts on money on A.I. right now, and as long as they’re willing to spend the billions (if not eventually trillions) to advance the technology, things are going to move quickly. But there are all kinds of roadblocks in the way — whether it be a recessionary economy, computational challenges, and even moral and philosophical hurdles to overcome — so the road to a real-world Skynet might be a long one.

Is A.I. dangerous?

Image used with permission by copyright holder

While we keep coming back to the obvious Skynet references, it’s time for a bit of a reality check. A.I.s are long strings of programmed responses and collections of data right now, and they don’t have the ability to makes truly independent decisions. That being the case, malice is definitely off the table for the time being. But that’s not to say human error could make them so.

For example, if a predictive A.I. tells a team that storms will spawn on the East Coast next week, the team can send resources and warnings there in preparation. But if storms actually appear in the Gulf of Mexico and hit the coast there, that prediction was inaccurate and may have endangered lives. No one would think the A.I. is somehow personally to blame for this; instead, they would look at the various data inputs and algorithm adjustments. Like other types of software, A.I.s remain complex tools for people to use.

At least for now, A.I. is, for the most part, harmless and if anything helpful to the world at large. But that could change in the distant future, and at that time we’ll need to have a serious discussion on just how much of our lives we’re willing to turn over to machines.

Ed Oswald
For fifteen years, Ed has written about the latest and greatest in gadgets and technology trends. At Digital Trends, he's…
The Ioniq 5 is once again eligible for the $7,500 tax credit
2025 Hyundai Ioniq 5

After a brief and confusing absence, the Hyundai Ioniq 5 is once again eligible for the full $7,500 federal tax credit — and this time, it's sticking around (at least for now). So, what happened? Let’s unpack the ride.

The Ioniq 5, a sleek and tech-savvy electric crossover, initially made headlines not just for its design, but for being built at Hyundai’s brand-new Metaplant in Georgia. That domestic assembly qualified it for the EV tax credit under the Inflation Reduction Act (IRA), which requires vehicles to be made in North America with batteries sourced from trade-friendly countries. But early in 2025, the Ioniq 5 vanished from the list. Why? Likely due to its battery packs, which were then still being sourced from SK On’s Hungarian facility.

Read more
Sebastian Stan lays out Bucky’s future after Thunderbolts
Sebastian Stan in Thunderbolts.

There are some spoilers ahead for the ending of Marvel's Thunderbolts. Stop reading now if you don't want to be spoiled.

Earlier this year, Captain America: Brave New World briefly introduced a new direction for James "Bucky" Barnes, a character Sebastian Stan has been playing since 2011 in Captain America: The First Avenger. In Brave New World, the former Winter Soldier apparently retired from being a reformed hero and went into politics by running for Congress. Thunderbolts reveals that Bucky won his election to the House of Representatives. But his stay in Congress was short.

Read more
Jeep Compass EV breaks cover—but will it come to the U.S.?
jeep compass ev us newjeepcompassfirsteditionhawaii  4

Jeep just pulled the wraps off the all-new Compass EV, and while it’s an exciting leap into the electric future, there's a catch—it might not make it to the U.S. anytime soon.
This is a brand new electric version of the Jeep Compass, and being built on Stellantis' STLA platform—the same architecture underpinning models like the Peugeot E-3008 and E-5008—it looks much slicker and packs a lot more inside than previous versions of the Compass.
Let’s start with what’s cool: the new Compass EV is packing up to 404 miles of range on a single charge, a 74 kWh battery, and fast-charging that gets you from 20% to 80% in about 30 minutes. Not bad for a compact SUV with Jeep's badge on the nose.
There are two versions: a front-wheel-drive model with 213 horsepower and a beefier all-wheel-drive version with 375 horsepower. That AWD setup isn’t just for looks—it can handle 20% inclines even without front traction, and comes with extra ground clearance and better off-road angles. In short, it’s still a Jeep.
The design's been refreshed too, and inside you’ll find the kind of tech and comfort you’d expect in a modern EV—sleek, smart, and ready for both city streets and dirt trails.
But here’s the thing: even though production starts soon in Italy, Jeep hasn’t said whether the Compass EV is coming to America. And the signs aren’t promising.
Plans to build it in Canada were recently put on hold, with production now delayed until at least early 2026. Some of that might have to do with possible U.S. tariffs on Canadian and Mexican vehicles—adding a layer of uncertainty to the whole rollout.
According to Kelley Blue Book, a Stellantis spokesperson confirmed that the company has “temporarily paused work on the next-generation Jeep Compass, including activities at” the Canadian plant that was originally meant to build the model. They added that Stellantis is “reassessing its product strategy in North America” to better match customer needs and demand for different powertrain options.
So while Europe and other markets are gearing up to get the Compass EV soon, American drivers might be left waiting—or miss out entirely.
That’s a shame, because on paper, this electric Jeep hits a lot of sweet spots. Let’s just hope it finds a way over here.

Read more