Skip to main content

Closest pair of supermassive black holes is merging into one mega black hole

At the heart of almost every galaxy, including our own, is a monstrously large black hole with mass millions or billions of times that of the sun. These supermassive black holes are generally lonely beasts, but astronomers have recently discovered the closest-ever pair of them which will eventually merge into one even larger black hole.

This image shows close-up (left) and wide (right) views of the two bright galactic nuclei, each housing a supermassive black hole, in NGC 7727, a galaxy located 89 million light-years away from Earth in the constellation Aquarius. Each nucleus consists of a dense group of stars with a supermassive black hole at its centre. The two black holes are on a collision course and form the closest pair of supermassive black holes found to date. It is also the pair with the smallest separation between two supermassive black holes found to date — observed to be just 1600 light-years apart in the sky. The image on the left was taken with the MUSE instrument on ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile while the one on the right was taken with ESO's VLT Survey Telescope.
Close-up (left) and wide (right) views of two bright galactic nuclei, each housing a supermassive black hole. ESO/Voggel et al.; ESO/VST ATLAS team. Acknowledgement: Durham University/CASU/WFAU

The galaxy NCG 7727 is host to the black hole pair, which is located around 89 million light-years away from Earth — far closer than the closest previously recorded pair, which is 470 million light-years away. The recently discovered pair are very close together by black hole standards, at a distance of 1,600 light-years, and are thought to have been brought together by two galaxies merging.

“It is the first time we find two supermassive black holes that are this close to each other, less than half the separation of the previous record holder,” said lead author Karina Voggel, an astronomer at the Strasbourg Observatory in France. The team detected the pair using the Multi-Unit Spectroscopic Explorer (MUSE) instrument on the European Southern Observatory’s Very Large Telescope, which was able to measure the masses of the two black holes by observing how they affected the movements of the stars around them.

They found that the larger of the black holes has a mass 150 million times that of the sun, and its smaller companion has a mass 6.3 million times that of the sun. The fact that the two are so close together (relatively speaking) means it is likely that they will merge together in the future.

“The small separation and velocity of the two black holes indicate that they will merge into one monster black hole, probably within the next 250 million years,” said co-author Holger Baumgardt, a professor at the University of Queensland, Australia.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
SpaceCamp, the amazing 1986 film, is stuck in a streaming black hole
The cast of SpaceCamp pose for a photo.

From left, Kate Capshaw, Joaquin Phoenix, Lea Thompson, Tate Donovan, Larry B. Scott, and Kelly Preston in 1986's "SpaceCamp." Image used with permission by copyright holder

The mid-1980s was a special time for movies. The Star Wars trilogy had wrapped up. We had two films with Indiana Jones. Ghostbusters was huge. Back to the Future. Revenge of the Nerds.

Read more
The universe has a cosmic ‘hum’ caused by merging black holes
This artist’s concept shows stars, black holes, and nebula laid over a grid representing the fabric of space-time.

In the last decade, astronomers made a major discovery, confirming the existence of gravitational waves. These long-theorized ripples in spacetime are created when extremely massive bodies such as two black holes collide, creating shocks that spread out across the universe and can be detected from millions of light-years away.

Now, a 15-year study has provided more evidence of these gravitational waves, including those at very low frequencies. A large international team in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration used three ground-based telescopes, the Arecibo Observatory in Puerto Rico, the Green Bank Telescope in West Virginia, and the Very Large Array in New Mexico, to observe pulsars. These rotating neutron stars give off regular pulses of energy, and these pulses can be affected by gravitational waves. By looking for small deviations in the pulses, the researchers were able to see how spacetime was being rippled.

Read more