Skip to main content

Rain of rocks falls on this planet with a temperature of 3,000°C

If it seems like it has been a hellish week here on Earth, it could be worse — we could be on K2-141b, a lava planet with some of the most extreme weather ever discovered. A new study suggests this planet is so hot that rocks can evaporate and rain back down onto the surface and it buffeted by winds of over 3,000 miles per hour.

Astronomers from McGill University used computer modeling to identify likely conditions on the extreme planet, which is roughly the same size as Earth and which orbits extremely close to its orange dwarf star. Like Earth, it has a surface, ocean, and atmosphere, but unlike Earth, all three of these are made from the same material on K2-141b: Rock.

As the planet orbits so close to its star, the star exerts a great deal of gravitational pull on the planet. That means the planet is kept in place and always has the same side facing the star. This is called being tidally locked, and it results in extreme conditions. One side of the planet is estimated to have a surface temperature of 3,000 degrees Celsius, hot enough to melt rocks, which the other side is -200 degrees Celsius.

The extreme heat on the dayside of the planet means that the sodium, silicon monoxide, and silicon dioxide which forms the rocks on the surface is evaporated into the atmosphere before condensing and falling back to the surface as rain, just like what happens with water here on Earth. The mineral vapor is carried to the planet’s nightside by extreme winds, where is rapidly cools and “rains” down into a magma ocean.

Artist’s impression of the lava planet K2-141b. At the center of the large illuminated region there is an ocean of molten rock overlain by an atmosphere of rock vapour. Supersonic winds blow towards the frigid and airless nightside, condensing into rock rain and snow, which sluggishly flow back to the hottest region of the magma ocean.
Artist’s impression of the lava planet K2-141b. At the center of the large illuminated region there is an ocean of molten rock overlain by an atmosphere of rock vapor. Supersonic winds blow towards the frigid and airless nightside, condensing into rock rain and snow, which sluggishly flow back to the hottest region of the magma ocean. Image by Julie Roussy, McGill Graphic Design and Getty Images.

The planet isn’t just an oddity. The study also demonstrates how cutting-edge astronomical tools can be used to examine exoplanets in more detail than ever before.“The study is the first to make predictions about weather conditions on K2-141b that can be detected from hundreds of light-years away with next-generation telescopes such as the James Webb Space Telescope,” lead author Giang Nguyen said in a statement.

And the study could give clues to the origin of other planets as well. “All rocky planets­, including Earth, started off as molten worlds but then rapidly cooled and solidified. Lava planets give us a rare glimpse at this stage of planetary evolution,” said co-author Professor Nicolas Cowan.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
How the ‘hell planet’ covered in lava oceans got so close to its star
An artist’s impression of the planet Janssen (orange circle), which orbits its star so closely that its entire surface is a lava ocean that reaches temperatures of around 2,000 degrees Celsius.

Of the over 5,000 known planets outside our solar system, one of the most dramatic is 55 Cancri e. Affectionately known as the "hell planet," it orbits so close to its star that it reaches temperatures of 3,600 degrees Fahrenheit and its surface is thought to be to covered in an ocean of lava. Located 40 light-years away, the planet has been a source of fascination for its extreme conditions, and recently researchers shared a new theory for how it got so hot.

The planet orbits its star, 55 Cancri A, at a distance of 1.5 million miles which means a year there lasts less than a day here on Earth. “While the Earth completes one orbit around our sun in 365 days, the planet studied here orbits once every 17.5 hours, hugging its host star, 55 Cnc,” said study author Debra Fischer of Yale University in a statement.

Read more
Researchers discover planet in the habitable zone of an ultra-cool star
The telescopes of the SPECULOOS Southern Observatory gaze out into the stunning night sky over the Atacama Desert, Chile.

Even though we've discovered over 5,000 exoplanets, or planets outside of our solar system, most of these aren't very Earth-like. They're often much bigger than Earth, being more like gas giants Saturn and Jupiter than small and rocky, and relatively few are located in the habitable zone where liquid water could exist on their surface. That's why it's exciting when a planet comparable to Earth is discovered in its habitable zone -- as one such recently discovered planet is.

Researchers looked at a planet called LP 890-9b or TOI-4306b, previously discovered by NASA's Transiting Exoplanet Survey Satellite. Using a ground-based telescope called SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars), they studied the planet which is around 30% larger than Earth and orbits extremely close to its star, with a year lasting just 2.7 days.

Read more