Skip to main content

Hubble images two galaxies aligned but light-years apart

This week’s image shared by the team from the Hubble Space Telescope shows two galaxies that appear to be overlapping. But unlike last week’s Hubble image, which showed two galaxies interacting, this week’s image shows two galaxies that are actually light-years apart.

The two galaxies here are NGC 4496A, which is 47 million light-years from Earth, and NGC 4496B, which is much further away at 212 million light-years distance. The two happen to be aligned so they appear to be overlapping because they are both in the same direction from Earth, but they do not actually interact at all.

The twin galaxies NGC 4496A and NGC 4496B dominate the frame in this image from the NASA/ESA Hubble Space Telescope.
The twin galaxies NGC 4496A and NGC 4496B dominate the frame in this image from the NASA/ESA Hubble Space Telescope. Both galaxies lie in the constellation Virgo, but despite appearing side-by-side in this image they are at vastly different distances from both Earth and one another. ESA/Hubble & NASA, T. Boeker, B. Holwerda, Dark Energy Survey, Department of Energy, Fermilab/Dark Energy Camera (DECam), Cerro Tololo Inter-American Observatory/NOIRLab/National Science Foundation/Association of Universities for Research in Astronomy, Sloan Digital Sky Survey; Acknowledgment: R. Colombari

This lining up of galaxies can be helpful for astronomers performing certain types of research though. “Chance galactic alignments such as this provide astronomers with the opportunity to delve into the distribution of dust in these galaxies,” Hubble scientists write. “Galactic dust – the dark tendrils threading through both NGC 4496A and NGC 4496B – adds to the beauty of astronomical images, but it also complicates astronomers’ observations. Dust in the universe tends to scatter and absorb blue light, making stars seem dimmer and redder in a process called ‘reddening.'”

You might have heard of redshift, where light from objects which are moving away from us is lengthened in wavelength and therefore is shifted to the red end of the spectrum. That phenomenon is useful for measuring the expansion of the universe. The effect of reddening, however, is something quite different.

“Reddening due to dust is different from redshift, which is due to the expansion of space itself,” the Hubble scientists explain. “By carefully measuring how dust in the foreground galaxy affects starlight from the background galaxy, astronomers can map the dust in the foreground galaxy’s spiral arms. The resulting ‘dust maps’ help astronomers calibrate measurements of everything from cosmological distances to the types of stars populating these galaxies.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more