Skip to main content

Hubble spies on 25 hot Jupiters to learn about their atmospheres

In the last decade, we’ve become remarkably good at identifying exoplanets, or planets outside our solar system. In fact, we recently passed an impressive milestone of over 5,000 confirmed exoplanets discovered. However, most of these detections tell us little about the planets we’ve identified — typically only their distance from their host star, and their mass or size.

The next big step in exoplanet research is learning more about these planets, and in particular what their atmospheres are like. This is one of the major aims of the James Webb Space Telescope when it’s ready for science this summer, but in the meantime, researchers are getting creative to answer these questions. Recently, astronomers using data from the Hubble Space Telescope have investigated 25 exoplanets to find out about their atmospheres.

Archival observations of 25 hot Jupiters by the NASA/ESA Hubble Space Telescope have been analysed by an international team of astronomers, enabling them to answer five open questions important to our understanding of exoplanet atmospheres. Amongst other findings, the team found that the presence of metal oxides and hydrides in the hottest exoplanet atmospheres was clearly correlated with the atmospheres' being thermally inverted.
Archival observations of 25 hot Jupiters by the NASA/ESA Hubble Space Telescope have been analyzed by an international team of astronomers, enabling them to answer five open questions important to our understanding of exoplanet atmospheres. Amongst other findings, the team found that the presence of metal oxides and hydrides in the hottest exoplanet atmospheres was clearly correlated with the atmospheres’ being thermally inverted. ESA/Hubble, N. Bartmann

“Hubble enabled the in-depth characterization of 25 exoplanets, and the amount of information we learned about their chemistry and formation — thanks to a decade of intense observing campaigns — is incredible,” said lead author of the study, Quentin Changeat, in a statement.

The 25 planets investigated were a type called hot Jupiters, meaning they are roughly the size of Jupiter and they orbit very close to their host stars. The team looked for hydrogen ions and metal oxides in the planets’ atmospheres, which can help them learn about how the planets formed as well as learn about their atmospheric chemistry. They combed through huge volumes of data including 600 hours of Hubble observations and 400 hours of observations from the now-retired Spitzer Space Telescope, looking at eclipses (when the exoplanet passes behind its star) and transits (when the exoplanet passes in front of its star).

This meant they could learn about correlations between atmospheric composition and other qualities, such as whether they showed thermal inversion — where an atmosphere gets hotter at higher altitudes. Thermal inversion was observed in the hottest exoplanets, with temperatures over 2,000 kelvin. The researchers also noted that there were hydrogen ions, titanium oxide, vanadium oxide, or iron hydride in almost all these hot atmospheres.

One of the notable things about this research is that it shows how large amounts of data can be used to look for large-scale trends in exoplanets. And that’s useful for predicting what other exoplanets might be like.

Researching these issues might even help us understand our own solar system, according to Changeat: “Many issues such as the origins of the water on Earth, the formation of the Moon, and the different evolutionary histories of Earth and Mars, are still unsolved despite our ability to obtain in-situ measurements. Large exoplanet population studies, such as the one we present here, aim at understanding those general processes.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more