Skip to main content

James Webb’s MIRI instrument has both a heater and a cooler

The long process of getting the James Webb Space Telescope ready for science operations continues, with the ongoing alignment of three of its instruments.

Webb recently reached the major milestone of aligning its mirrors with its NIRCam instrument, in a successful step that promises great results to come. “Webb’s alignment at the NIRCam field showed some spectacular diffraction-limited images, producing a tantalizing glimpse of the capabilities this observatory will carry for its science program,” wrote two Webb researchers, Michael McElwain, Webb observatory project scientist, and Charles Bowers, Webb deputy observatory project scientist, both at NASA Goddard, in a recent blog post. “This was a major milestone because it required nearly all of the observatory systems to be functioning as designed. It all worked as well as we dared to hope, and it was certainly a moment to celebrate.”

Now, the Webb team is working on aligning two more of the instruments — the Near-Infrared Slitless Spectrograph (NIRISS) and Near-Infrared Spectrometer (NIRSpec) — as well as the guider, called the Fine Guidance Sensor (FGS). This process is expected to take around six weeks and will ensure that all of the instruments can work together. Along with NIRCam, these comprise Webb’s near-infrared instruments.

While the three near-infrared instruments are passively cooled — meaning that heat is dispersed from the telescope and into space using design elements like heat sinks which require no power — the fourth instrument, MIRI, works in the mid-infrared wavelength and requires active cooling. Because MIRI uses a different type of detector than the other instruments, and these detectors need to be at an extremely low temperature of less than 7 kelvin to work properly, the instrument needs to be fitted with a cryocooler. This refrigeration system uses helium gas and includes pumps that require power but must produce very little vibration to avoid interfering with instrument readings.

In addition to this cooling system, MIRI is also fitted with heaters so that the cooldown process can be carefully managed to prevent ice from forming on the components. The heaters will shortly be turned off, allowing the cooling system to bring the instrument down to its operating temperature.

With the cooling of MIRI underway, it will take a few weeks until the final instrument gets cool enough to be ready for alignment. Then, with all four of the instruments aligned, the Webb team can move onto the next phase of commissioning — optical stability tests and instrument performance measurement — to get the telescope ready for science operations this summer.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
SpaceX has set a new date for Axiom-3 crewed rocket launch
The Axiom 3 mission waiting to launch.

The Falcon 9 rocket that will carry the Axiom 3 crew to space. SpaceX

NASA’s third private launch to the International Space Station (ISS) has been moved from Wednesday to Thursday to give SpaceX more time to complete pre-launch checkouts and data analysis on the Falcon 9 rocket and Crew Dragon capsule.

Read more
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more