Skip to main content

James Webb’s MIRI instrument about to face most daunting challenge yet

In the long process of getting ready to take its first scientific observations this summer, the James Webb Space Telescope now has three out of its four instruments aligned to its mirrors. The fourth instrument, MIRI or the mid-infrared instrument, will take a little longer because it uses a different type of sensor which needs to be kept at an extremely low temperature — and achieving this temperature requires, perhaps surprisingly, both a cooler and a heater. Now, NASA has shared an update on the process of getting MIRI down to temperature and ready for operations.

Webb’s three other instruments are already at their chilly operating temperatures of 34 to 39 kelvins, but MIRI needs to get all the way down to 7 kelvins. To achieve that, the instrument has a special cryocooler system. “Over the last couple of weeks, the cryocooler has been circulating cold helium gas past the MIRI optical bench, which will help cool it to about 15 kelvins,” cryocooler specialists Konstantin Penanen and Bret Naylor at NASA’s Jet Propulsion Laboratory wrote. “Soon, the cryocooler is about to experience the most challenging days of its mission. By operating cryogenic valves, the cryocooler will redirect the circulating helium gas and force it through a flow restriction. As the gas expands when exiting the restriction, it becomes colder, and can then bring the MIRI detectors to their cool operating temperature of below 7 kelvins.”

MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012.
MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012. NASA/Chris Gunn

Before the instrument can reach operating temperature, however, it has to make it through a difficult stage called the pinch point. This is the point at around 15 kelvins when the cryocooler is at its cooling limit, and engineers have to perform a series of complex and rapid adjustments based on the cooler’s temperature and flow rate. This critical point is the most difficult part of the operation, so technicians have been practicing it here on Earth to get ready for the real event. Once this tricky operation is done, MIRI will be ready to start taking readings.

MIRI is particularly valuable as an instrument because it looks in the mid-infrared rather than near-infrared, enabling a different set of scientific observations of targets like exoplanets. “The imager promises to reveal astronomical targets ranging from nearby nebulae to distant interacting galaxies with a clarity and sensitivity far beyond what we’ve seen before,” explained two MIRI scientists, Alistair Glasse and Macarena Garcia Marin. “Our grasp on these glittering scientific treasures relies on MIRI being cooled to a temperature below the rest of the observatory, using its own dedicated refrigerator. Exoplanets at temperatures similar to Earth will shine most brightly in mid-infrared light.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more
James Webb telescope captures a dramatic image of newborn star
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

A new image of a Herbig-Haro object captured by the James Webb Space Telescope shows the dramatic outflows from a young star. These luminous flares are created when stellar winds shoot off in opposite directions from newborn stars, as the jets of gas slam into nearby dust and gas at tremendous speed. These objects can be huge, up to several light-years across, and they glow brightly in the infrared wavelengths in which James Webb operates.

This image shows Herbig-Haro object HH 797, which is located close to the IC 348 star cluster, and is also nearby to another Herbig-Haro object that Webb captured recently: HH 211.

Read more