Skip to main content

A lucky dip into Jupiter’s clouds captures stunning image of the planet

Astronomers have captured some of the highest ever resolution infrared images of Jupiter taken from the Earth, using the Gemini North telescope in Hawaii.

“The Gemini data were critical because they allowed us to probe deeply into Jupiter’s clouds on a regular schedule,” explained Michael Wong of University of California Berkeley, leader of the research team, in a statement. “We used a very powerful technique called lucky imaging.”

Lucky imaging works by capturing a large number of very short exposure images from an Earth-based telescope. Most of these images will be blurry due to the movements in Earth’s atmosphere. But the occasional “lucky” image will be taken at a moment when the atmosphere is still, and will capture its target in sharp detail. The lucky images can then be combined into one mosaic. This technique allowed the researchers to capture the sharpest infrared image of Jupiter yet seen.

image showing the entire disk of Jupiter in infrared light
This image showing the entire disk of Jupiter in infrared light was compiled from a mosaic of nine separate pointings observed by the international Gemini Observatory. International Gemini Observatory/NOIRLab/NSF/AURA, M.H. Wong (UC Berkeley) and team Acknowledgments: Mahdi Zamani

By looking in the infrared wavelength instead of the visible light wavelength, the astronomers were able to look through the thin haze in Jupiter’s atmosphere which infrared wavelengths can pass through. But the thicker clouds in the upper atmosphere block the infrared wanes, leading to this effect where the deeper, warmer layers of atmosphere glow through gaps in the cloud cover.

One interesting finding from this study is the peculiar glow seen in the Great Red Spot, a storm that has been raging for hundreds of years and is so large it is visible from space. The glow indicates that some of the upper clouds are parting to offer a view of the deeper layers.

“Similar features have been seen in the Great Red Spot before,” team member Glenn Orton of NASA’s Jet Propulsion Lab explained, “but visible-light observation couldn’t distinguish between darker cloud material, and thinner cloud cover over Jupiter’s warm interior, so their nature remained a mystery.”

This new data suggests that the glow of this section in the infrared wavelength indicates a gap in the clouds which is allowing Jupiter’s internal heat to shine through and to be detectable from outside of the planet’s atmosphere.

The findings are published in The Astrophysical Journal Supplement Series.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures stunning image of star formation in nearby galaxy
NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. 

A stunning new image from the James Webb Space Telescope shows a stellar nursery called NGC 346, which is not only beautiful but is also leading astronomers to rethink their theories about how stars and planets could have formed in the early universe.

The star cluster NGC 346 is a busy region full of star formation and is located in the nearby Small Magellanic Cloud, a satellite galaxy of the Milky Way. The composition of the Small Magellanic Cloud is rather different from that of the Milky Way, as it has fewer heavier elements. As dust is typically composed of these heavier elements, astronomers thought that there would be less dust in the Small Magellanic Cloud -- but that's not what Webb found.

Read more
The ghostly remnants of a dead star captured in stunning image
This image shows a spectacular view of the orange and pink clouds that make up what remains after the explosive death of a massive star — the Vela supernova remnant. This detailed image consists of 554 million pixels, and is a combined mosaic image of observations taken with the 268-million-pixel OmegaCAM camera at the VLT Survey Telescope, hosted at ESO’s Paranal Observatory. OmegaCAM can take images through several filters that each let the telescope see the light emitted in a distinct colour. To capture this image, four filters have been used, represented here by a combination of magenta, blue, green and red. The result is an extremely detailed and stunning view of both the gaseous filaments in the remnant and the foreground bright blue stars that add sparkle to the image.

When a massive star runs out of fuel and comes to the end of its life, it can explode in an enormous and epic event called a supernova, which can be as bright as an entire galaxy. These explosions can obliterate anything around them, but they aren't simply destructive -- they can also create stunning structures called supernova remnants. These remnants are formed as shock waves from the explosion travel through nearby clouds of gas, sculpting them into beautiful shapes.

One such ghostly remnant has been captured by a ground-based instrument called OmegaCAM on the European Southern Observatory's VLT Survey Telescope.  The Vela supernova remnant is located 800 light-years away and was created by the death of a star around 11,000 years ago.

Read more
NASA’s Juno spacecraft shares first image from Jupiter moon flyby
Jupiter's Europa moon captured by NASA's Juno spacecraft.

After beaming back images from its flyby of Jupiter’s largest moon, Ganymede, as well as stunning images of Jupiter itself, NASA’s Juno spacecraft this week did the same for another of the planet’s moons: Europa.

And the early results do no disappoint.

Read more