Skip to main content

Citizen scientists are helping to map Mars’s strange ridge features

Members of the public are helping to map unusual ridge features in the Jezero crater on Mars, near the area where the Perseverance rover and Ingenuity helicopter are currently exploring. Thousands of citizen scientists have helped to map out ridge networks that can give clues to how water flowed on Mars billions of years ago, as part of a recently published paper.

Researchers from Arizona State University and NASA’s Jet Propulsion Laboratory invited the public to help classify data from a number of orbiting Mars instruments, including the NASA Mars Odyssey orbiter’s THEMIS camera and the Mars Reconnaissance orbiter’s CTX and HiRISE instruments. Through the Zooniverse platform, citizen scientists identified a total of 953 polygonal ridge networks in an area covering around 20% of Mars’s surface.

Map of polygonal ridge networks (black dots) identified in mapping area (dashed black outline), covering approximately a fifth of Mars’ total surface area.
Map of polygonal ridge networks (black dots) identified in mapping area (dashed black outline), covering approximately a fifth of Mars’ total surface area. The Mars Perseverance rover landing site is shown in purple. Background: Mars Orbiter Laser Altimeter Elevation Map. NASA/JPL/GSFC

“Citizen scientists played an integral role in this research because these features are essentially patterns at the surface, so almost anyone with a computer and internet can help identify these patterns using images of Mars,” one of the authors, Aditya Khuller, said in a statement.

The ridge networks were most often identified in extremely old terrain that was up to 4 billion years old, which is around the time that Mars is thought to have had liquid water flowing on its surface. Similar ridges have been found to have clays in previous research, which is important as clays tend to form in the presence of water. Though many of the ridges are now covered in dust, which makes them hard to analyze, this suggests that they could have formed due to water flowing on or near the surface.

Unusual ridge networks on Mars may provide clues about the history of the Red Planet.
Unusual ridge networks on Mars may provide clues about the history of the Red Planet. NASA/JPL/MSSS/Caltech Murray Lab/Esri

The researchers want to continue inviting the public to help with the mapping work. “We hope to eventually map the entire planet with the help of citizen scientists,” Khuller said. “If we are lucky, the Mars 2020 Perseverance rover might be able to confirm these findings, but the nearest set of ridges is a few kilometers away, so they might only be visited on a potential extended mission.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Mars Odyssey spacecraft pulls a sideways maneuver to capture the planet’s horizon
NASA Orbiter Snaps Stunning Views of Mars Horizon

A new image from a NASA orbiter shows an unusual view of Mars that captures the planet's horizon complete with clouds. It is similar to the kinds of views of Earth that astronauts get from the International Space Station, showing what Mars would look like if seen from a similar vantage point.

The image was taken by NASA's Mars Odyssey spacecraft, which has been orbiting the planet since 2001. In its over 20 years of operations, the orbiter made key discoveries, including some of the first detections of subsurface ice on the planet. It has also created a global map of the planet's surface using its Thermal Emission Imaging System (THEMIS) instrument.

Read more
The Curiosity rover reaches a milestone on Mars
Curiosity Rover

NASA's Curiosity rover, which is currently exploring Mars' Gale Crater, recently marked an impressive milestone: 4,000 days on Mars. The rover landed more than a decade ago on August 5, 2012, and since then it has continued to explore the area, collect rock samples, and make its way up the epic slopes of Mount Sharp.

The 4,000 days are measured in mission time, which is calculated in martian days or sols. Due to the differing rates of rotation of Earth and Mars, a day on Mars is slightly longer than a day on Earth, by about 40 minutes. And also, due to the difference distances between Earth and Mars and the sun, a martian year is longer too - at 668 sols, equivalent to 687 Earth days. Those working on Mars rover missions, especially the rover drivers, have to operate on Mars time, so their schedules are out of sync with typical Earth working hours and they generally work on 90-sol shifts to allow them time to readjust to Earth schedules.

Read more
Map of Mars shows the location of ice beneath the planet’s surface
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.

One of the challenges of sending human explorers to Mars is that, due to the logistics of the journey, they will have to be on the planet's surface for considerably longer than the missions of a few days which have been sent to the moon in the past. That means future explorers will need access to resources like food, water, and oxygen -- and rather than having to carry months' worth of supplies through space, it's far more efficient to find ways to produce those resources on Mars itself.

That's the idea behind searching for water ice deposits on Mars. There's plenty of ice on the surface around the planet's poles, but most mission concepts are more focused on the planet's equatorial region. The good news is that there is ice present in these areas too, but the bad news is that it's primarily located below the surface and is thus hard to locate.

Read more