Skip to main content

Mars webcam reveals the secrets of this enormous, elongated cloud

A strangely elongated cloud named the Arsia Mons Elongated Cloud or AMEC.
A strangely elongated cloud named the Arsia Mons Elongated Cloud or AMEC. ESA/GCP/UPV/EHU Bilbao

There’s an unusual feature in the skies of Mars: a huge, elongated cloud stretching over 1,100 miles long over the Arsia Mons volcano, appearing and disappearing one per martian year. Now, an unexpected tool aboard the Mars Express spacecraft has revealed more about how this cloud grows and shrinks considerably on a daily cycle that lasts for several months.

The cloud is difficult to observe from orbit as it changes so quickly and stretches so wide. Most orbiters focus on a small area in high resolution, but the Mars Express has a secret weapon on board.

“To clear these hurdles, we used one of Mars Express’s secret tools — the Visual Monitoring Camera, or VMC,” said lead author Jorge Hernández Bernal of the University of the Basque Country in Bilbao, Spain in a statement.

The VMC is nicknamed the “Mars webcam” because when it was installed in 2003, it had roughly the same resolution as a typical webcam. It was originally intended just to confirm whether a lander had made it to the Martian surface, and was later reactivated to take pictures of the surface for public outreach.

“However, recently, the VMC was reclassified as a camera for science,” Jorge said. “Although it has a low spatial resolution, it has a wide field of view — essential to see the big picture at different local times of day — and is wonderful for tracking a feature’s evolution over both a long period of time and in small time steps. As a result, we could study the whole cloud across numerous life cycles.”

Using the VMC along with other science instruments on various Mars orbiters, the team were able to measure the size of the cloud and confirm that it is an “orographic” type, meaning it is formed when winds hit the huge volcano on the surface and are funneled upward, condensing into a cloud when they reach higher altitudes. Before each sunrise, the cloud starts to grow at an incredible rate of 370 mph before being pulled westward and evaporating each morning.

While there are similar processes that happen on Earth, they are not as large or dramatic. “Although orographic clouds are commonly observed on Earth, they don’t reach such enormous lengths or show such vivid dynamics,” said co-author Agustin Sánchez-Lavega. “Understanding this cloud gives us the exciting opportunity to try to replicate the cloud’s formation with models — models that will improve our knowledge of climatic systems on both Mars and Earth.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Mars Odyssey spacecraft pulls a sideways maneuver to capture the planet’s horizon
NASA Orbiter Snaps Stunning Views of Mars Horizon

A new image from a NASA orbiter shows an unusual view of Mars that captures the planet's horizon complete with clouds. It is similar to the kinds of views of Earth that astronauts get from the International Space Station, showing what Mars would look like if seen from a similar vantage point.

The image was taken by NASA's Mars Odyssey spacecraft, which has been orbiting the planet since 2001. In its over 20 years of operations, the orbiter made key discoveries, including some of the first detections of subsurface ice on the planet. It has also created a global map of the planet's surface using its Thermal Emission Imaging System (THEMIS) instrument.

Read more
The Curiosity rover reaches a milestone on Mars
Curiosity Rover

NASA's Curiosity rover, which is currently exploring Mars' Gale Crater, recently marked an impressive milestone: 4,000 days on Mars. The rover landed more than a decade ago on August 5, 2012, and since then it has continued to explore the area, collect rock samples, and make its way up the epic slopes of Mount Sharp.

The 4,000 days are measured in mission time, which is calculated in martian days or sols. Due to the differing rates of rotation of Earth and Mars, a day on Mars is slightly longer than a day on Earth, by about 40 minutes. And also, due to the difference distances between Earth and Mars and the sun, a martian year is longer too - at 668 sols, equivalent to 687 Earth days. Those working on Mars rover missions, especially the rover drivers, have to operate on Mars time, so their schedules are out of sync with typical Earth working hours and they generally work on 90-sol shifts to allow them time to readjust to Earth schedules.

Read more
Map of Mars shows the location of ice beneath the planet’s surface
In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.

One of the challenges of sending human explorers to Mars is that, due to the logistics of the journey, they will have to be on the planet's surface for considerably longer than the missions of a few days which have been sent to the moon in the past. That means future explorers will need access to resources like food, water, and oxygen -- and rather than having to carry months' worth of supplies through space, it's far more efficient to find ways to produce those resources on Mars itself.

That's the idea behind searching for water ice deposits on Mars. There's plenty of ice on the surface around the planet's poles, but most mission concepts are more focused on the planet's equatorial region. The good news is that there is ice present in these areas too, but the bad news is that it's primarily located below the surface and is thus hard to locate.

Read more