NASA’s Solar Dynamics Observatory spots biggest solar flare since 2017

Our sun is an ever-changing and dynamic system, and NASA’s Solar Dynamics Observatory recently spotted the largest solar flare seen since 2017.

Periodically, the sun will flash brighter in an event called a solar flare, often accompanied by a huge burst of plasma arcing out from the sun’s surface called a coronal mass ejection. These flares are associated with an increased sunspot activity, in which dark spots appear on the surface of the sun.

Recommended Videos

While solar flares can be potentially damaging to satellite communications and electrical grids here on Earth, you needn’t worry about this recent flare — it has not passed the threshold set by the U.S. government’s Space Weather Prediction Center which would require an alert.

The flare is of interest though, as it indicates that the sun may be entering a new phase of its cycle.

On the upper left side of this image from May 29, 2020, from NASA’s Solar Dynamics Observatory — shown here in the 171-angstrom wavelength, which is typically colorized in gold — one can see a spot of light hovering above the left horizon. This light emanates from solar material tracing out magnetic field lines that are hovering over a set of sunspots about to rotate over the left limb of the Sun. NASA/Solar Dynamics Observatory/Joy Ng

The sun’s activity varies over an 11-year cycle, during which the number of sunspots and the amount of solar flare activity changes. The sun is thought to currently be in a period of minimal activity, called a solar minimum, and the appearance of this large solar flare could indicate that the solar minimum is coming to an end. That would mark the end of the current solar cycle, designated Solar Cycle 24, and the beginning of Solar Cycle 25.

In order to know whether the solar minimum is actually coming to a close, scientists need to continue monitoring the total number of sunspots appearing on the sun’s surface. But this will take some time, as NASA explains in a blog post: “It takes at least six months of solar observations and sunspot-counting after a minimum to know when it’s occurred. Because that minimum is defined by the lowest number of sunspots in a cycle, scientists need to see the numbers consistently rising before they can determine when exactly they were at the bottom.

“That means solar minimum is an instance only recognizable in hindsight: It could take six to 12 months after the fact to confirm when minimum has actually passed.”

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Scientists ‘hack’ Solar Orbiter’s camera to get a better look at the sun

The European Space Agency's (ESA) Solar Orbiter spacecraft is performing a long series of flybys of various planets to bring it closer and closer to the sun on each pass. It will eventually come within 26 million miles to observe the sun up close, and enter in the orbit of Mercury. It will be the closet a camera has ever gotten to the sun, in order to take detailed images of the sun's corona and its local environment.

A new way to view the Sun

Read more
Watch NASA’s new solar array unfurl on the space station

A view of the new rollout solar array unfolding after NASA astronauts Steve Bowen and Woody Hoburg successfully installed it to the 1B power channel on June 15, 2023. NASA TV

Two NASA astronauts completed a successful spacewalk at the International Space Station on Thursday.

Read more
Horrifying up-close images of a sunspot captured by the Inouye Solar Telescope

A stunning new set of images from the Daniel K. Inouye Solar Telescope shows the surface of the sun in incredible detail -- including frankly disturbing images of sunspots seen up close. The images have been collected over the telescope's first year of operations and have been shared as a preview of the data that can be expected from this tool.

Located in Maui, Hawai'i, the Inouye Solar Telescope is specifically designed to be able to look at the surface of the sun to learn about its magnetic fields, which are important for understanding the space weather which is caused by solar eruptions. The newly released images show calmer, quieter areas of the sun's surface and the deep black of sunspots, which are temporary dark regions that periodically appear on the surface, or photosphere.

Read more