Skip to main content

Amazing new glove can translate sign language into spoken words in real time

Wearable Sign-to-Speech Translation

Researchers at the University of California, Los Angeles, have developed a wearable device, resembling something approaching the Nintendo Power Glove, that’s able to translate American Sign Language into speech in real time using a smartphone app. While it’s still in the prototype phase, it could one day help those who rely on sign language to communicate more easily with non-signers, along with assisting novices who are learning sign language.

“Analog triboelectrification and electrostatic induction-based signals generated by sign language components — including hand configurations and motions, and facial expressions — are converted to the digital domain by the wearable sign-to-speech translation system to implement sign-to-speech translation,” Jun Chen, assistant professor of bioengineering at the UCLA Samueli School of Engineering, told Digital Trends. “Our system offers good mechanical and chemical durability, high sensitivity, quick response times, and excellent stretchability.”

The gloves contain thin, stretchable sensors made of electrically conductive yarn which run along the length of all five fingers. They communicate the finger movements of the wearer to a small, coin-sized circuit board that’s worn on the wrist, which in turn transmits the data to a connected smartphone. Because American Sign Language relies on facial expressions in addition to hand movements, the system also involves sensors adhered to users’ eyebrows and the sides of their mouths. Built around machine learning algorithms, the wearable is currently able to recognize 660 signs, including every letter of the alphabet and numbers zero through nine.

ASL reading system 1
University of California, Los Angeles

Chen said that previous sign language translation devices have been based on a wide range of techniques, including electromyography, the piezoresistive effect, ionic conduction, the capacitive effect, and photography and image processing. But the inherent complexity of these tools, in addition to how cumbersome they are, has made them little more than proof-of-concept lab experiments.

“For example, vision-based sign language translation systems have high requirements for optimal lighting,” Chen said. “If the available lighting is poor, this compromises the visual quality of signing motion captured by the camera and consequently affects the recognition results. Alternatively, sign language translation systems based on surface electromyography have strict requirements for the position of the worn sensors, which can impact translation accuracy and reliability.”

The hope is that this wearable sign-to-speech translation system could be more realistically used in real-world settings. In addition to not being affected by external variables like light, the UCLA sign language wearable could be produced inexpensively. “We are still working to polish the system,” Chen said. “It may take three to five years to get it commercialized.”

A paper describing the work was recently published in the journal Nature Electronics.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Microsoft Edge is slowly becoming the go-to browser for PC gamers
microsoft edge chromium to roll out automatically soon chrome

Microsoft Edge is already jam-packed with features that other web browsers don't have, but a new one might well help your PC run faster while gaming. The default Windows web browser now has the option to limit the amount of RAM it uses, helping you prioritize RAM access to other applications or games. The feature is currently being tested in the Canary version of Microsoft Edge and could roll out to everyone if Microsoft deems it useful enough and gets quality feedback.

Spotted by X (formerly Twitter) user Leopeva64, the setting for this new feature is buried in the System and Performance section of the latest Canary version of Microsoft Edge. It is being rolled out gradually, so not everyone has it yet, but it gives two options for controlling your PC resources.

Read more
How Intel and Microsoft are teaming up to take on Apple
An Intel Meteor Lake system-on-a-chip.

It seems like Apple might need to watch out, because Intel and Microsoft are coming for it after the latter two companies reportedly forged a close partnership during the development of Intel Lunar Lake chips. Lunar Lake refers to Intel's upcoming generation of mobile processors that are aimed specifically at the thin and light segment. While the specs are said to be fairly modest, some signs hint that Lunar Lake may have enough of an advantage to pose a threat to some of the best processors.

Today's round of Intel Lunar Lake leaks comes from Igor's Lab. The system-on-a-chip (SoC), pictured above, is Intel's low-power solution made for thin laptops that's said to be coming out later this year. Curiously, the chips weren't manufactured on Intel's own process, but on TSMC's N3B node. This is an interesting development because Intel typically sticks to its own fabs, and it even plans to sell its manufacturing services to rivals like AMD. This time, however, Intel opted for the N3B node for its compute tile.

Read more
How much does an AI supercomputer cost? Try $100 billion
A Microsoft datacenter.

It looks like OpenAI's ChatGPT and Sora, among other projects, are about to get a lot more juice. According to a new report shared by The Information, Microsoft and OpenAI are working on a new data center project, one part of which will be a massive AI supercomputer dubbed "Stargate." Microsoft is said to be footing the bill, and the cost is astronomical as the name of the supercomputer suggests -- the whole project might cost over $100 billion.

Spending over $100 billion on anything is mind-blowing, but when put into perspective, the price truly shows just how big a venture this might be: The Information claims that the new Microsoft and OpenAI joint project might cost a whopping 100 times more than some of the largest data centers currently in operation.

Read more