Skip to main content

Age of ancient galaxy discovered by Webb confirmed using ALMA

Since the James Webb Space Telescope launched in December 2021, astronomers and the public have been excited to see how powerful this new tool is, and how it has been able to see some of the most distant galaxies ever observed. However, as cutting-edge science, some of these early results have been contentious as astronomers work to figure out how accurate the data is, due to issues like calibration of the instruments.

Another way to verify results is to look for supporting evidence from other tools, such as recent work using the Atacama Large Millimeter/submillimeter Array or ALMA, a ground-based array of telescopes located in Chile, which has confirmed the age of a very distant galaxy using the detection of oxygen.

A distant JWST-identified galaxy, GHZ2/GLASS-z12.
The radio telescope array ALMA has pinpointed the exact cosmic age of a distant JWST-identified galaxy, GHZ2/GLASS-z12, at 367 million years after the Big Bang. ALMA’s deep spectroscopic observations revealed a spectral emission line associated with ionized oxygen near the galaxy, which has been shifted in its observed frequency due to the expansion of the Universe since the line was emitted. This observation confirms that the JWST is able to look out to record distances, and heralds a leap in our ability to understand the formation of the earliest galaxies in the Universe. NASA / ESA / CSA / T. Treu, UCLA / NAOJ / T. Bakx, Nagoya U.

A group of researchers from Nagoya University and the National Astronomical Observatory of Japan looked at a galaxy named GHZ2 or GLASS-z12, which was first identified in the James Webb GLASS survey. To see if the galaxy really was as old as it appeared to be, the researchers used ALMA to perform a technique called spectroscopy, in which light coming from the target is broken down into different wavelengths. This shows which wavelengths are missing because they have been absorbed by a particular element — in this case, oxygen.

The research looked at the emission line of oxygen and confirmed its redshift, which refers to the shifting of light from a distant target toward the red end of the spectrum due to the expansion of the universe. This allowed them to confirm that galaxy GLASS-Z12 is extremely old, dating back to 367 million years after the Big Bang.

“The first images of the James Webb Space Telescope revealed so many early galaxies, that we felt we had to test its results using the best observatory on Earth,” said lead author Tom Bakx of Nagoya University in a statement. “It was a very exciting time to be an observational astronomer, and we could track the status of the observations that will test the JWST results in real time.”

The finding supports the fact that the galaxies observed by Webb include some of the oldest galaxies known, demonstrating how powerful our tools now are for looking back to the early stages of the universe.

“These deep ALMA observations provide robust evidence of the existence of galaxies within the first few hundred million years after the Big Bang, and confirms the surprising results from the Webb observations,” said Jorge Zavala of the National Astronomical Observatory of Japan. “The work of JWST has only just begun, but we are already adjusting our models of how galaxies form in the early Universe to match these observations. The combined power of Webb and the radio telescope array ALMA give us the confidence to push our cosmic horizons ever closer to the dawn of the Universe.”

The research is published in the journal Monthly Notices of the Royal Astronomy Society.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more