Skip to main content

Misbehaving ‘baby’ black holes could cause strange brightening of radio galaxies

The radio galaxy Hercules A has an active supermassive black hole at its centre. Here it is pictured emitting high energy particles in jets expanding out into radio lobes.
The radio galaxy Hercules A has an active supermassive black hole at its center. Here it is pictured emitting high energy particles in jets expanding out into radio lobes. NASA/ESA/NRAO

The more we learn about black holes, the more mysterious they seem to be. A new study has looked at “baby” supermassive black holes, which lie at the heart of young galaxies, and found that they may be misbehaving in intriguing ways.

Almost all galaxies have a supermassive black hole at their center, and generally the bigger the galaxy, the bigger the black hole. And one way to measure a distant galaxy is to observe how much light it gives off, and how this light changes over time. Now, researchers from Curtin University have identified a number of galaxies in which the level of light changes much more quickly than expected, and they think that has to do with their supermassive black holes.

“Given their size, you’d expect the amount of light emitted from galaxies would change slowly and steadily, over timescales far beyond a person’s lifetime,” two of the researchers, Kathyrn Ross and Natasha Hurley-Walker of Curtin University, wrote in The Conversation. “But our research, published in the Monthly Notices of the Royal Astronomical Society, found a surprising population of galaxies whose light changes much more quickly, in just a matter of years.”

There are other strange things about these galaxies too. One way that astronomers sort radio galaxies is through the frequencies they give off, classified by “radio color.” When observed in the radio wavelength, younger galaxies appear blue and are brighter at higher radio frequencies. Older galaxies appear red and are brighter at lower radio frequencies. The process of morphing from blue to red should be very, very slow, but some of the galaxies in this sample changed their brightness and their color quickly, which was a puzzle to explain.

The researchers came up with three possibilities to explain the strange brightening and color change: The first and most prosaic explanation is that the light from these galaxies could have been distorted by the dust and gas in our own galaxy, and the galaxies aren’t really changing.

But the other two explanations have to do with the galaxies’ black holes: Either because the black holes happen to be lined up in such a way that they are firing jets of particles called “blazars” directly at us, making the light from the galaxy appear brighter and more variable, or that the black holes are chomping down on extra matter and spewing out a clump of extra particles. As this clump travels toward us, we see it as a change in frequency.

The researchers hope to use upcoming projects like the Square Kilometer Array to understand more about radio galaxies, as they may be far more changeable and dynamic than we previously realized.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more
Machine learning used to sharpen the first image of a black hole
A team of researchers, including an astronomer with NSF’s NOIRLab, has developed a new machine-learning technique to enhance the fidelity and sharpness of radio interferometry images. To demonstrate the power of their new approach, which is called PRIMO, the team created a new, high-fidelity version of the iconic Event Horizon Telescope's image of the supermassive black hole at the center of Messier 87, a giant elliptical galaxy located 55 million light-years from Earth. The image of the M87 supermassive black hole originally published by the EHT collaboration in 2019 (left); and a new image generated by the PRIMO algorithm using the same data set (right).

The world watched in delight when scientists revealed the first-ever image of a black hole in 2019, showing the huge black hole at the center of galaxy Messier 87. Now, that image has been refined and sharpened using machine learning techniques. The approach, called PRIMO or principal-component interferometric modeling, was developed by some of the same researchers that worked on the original Event Horizon Telescope project that took the photo of the black hole.

That image combined data from seven radio telescopes around the globe which worked together to form a virtual Earth-sized array. While that approach was amazingly effective at seeing such a distant object located 55 million light-years away, it did mean that there were some gaps in the original data. The new machine learning approach has been used to fill in those gaps, which allows for a more sharp and more precise final image.

Read more
Unique black hole is trailed by 200,000 light-year-long tail of stars
This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes. As the black hole plows through intergalactic space it compresses tenuous gas in front to it. This precipitates the birth of hot blue stars. This illustration is based on Hubble Space Telescope observations of a 200,000-light-year-long contrail of stars behind an escaping black hole.

Black holes might have a reputation as terrifying monsters, devouring all they come into contact with -- but they can be a force of creation too, feeding the formation of new stars. Researchers using data from the Hubble Space Telescope recently spotted an unexpectedly huge trail of stars forming in the wake of a rogue black hole.

While most very large black holes, called supermassive black holes, sit at the center of galaxies, occasionally these enormous beasts can be found wandering alone in the depths of space. That's the case with the recently discovered black hole with the mass of 20 million suns, which is streaking through the sky at tremendous speed. This likely began with two galaxies merging, each with its own supermassive black hole, which formed a binary system. Then a third galaxy got too close, and in the chaos of a three-way merger one of the black holes was kicked out and sent zipping off into space -- so fast that if it were in our solar system, it would travel from the Earth to the moon in 14 minutes.

Read more