Skip to main content

There’s a tiny exoplanet orbiting our neighbor, known as Barnard’s star

Artist’s impression of a sub-Earth-mass planet orbiting Barnard’s star
This artist’s impression shows Barnard b, a sub-Earth-mass planet that was discovered orbiting Barnard’s star. Its signal was detected with the ESPRESSO instrument on ESO’s Very Large Telescope (VLT), and astronomers were able to confirm it with data from other instruments. An earlier promising detection in 2018 around the same star could not be confirmed by these data. On this newly discovered exoplanet, which has at least half the mass of Venus but is too hot to support liquid water, a year lasts just over three Earth days. ESO/M. Kornmesser

In our local cosmic neighborhood, the nearest star is Proxima Centauri, which is part of the three-star Alpha Centauri system and known to host exoplanets of its own. But just a little further away is a single star on its own, known as Barnard’s star. Recently, astronomers discovered that this star also hosts at least one exoplanet, and could host as many as four.

At just six light-years from Earth, Barnard’s star is close by and has long been of interest to researchers searching for nearby exoplanets. But as a small, dim type of star called a red dwarf, no one has discovered an exoplanet here before — though there were hints found in 2018 that such a planet might exist.

Recommended Videos

Now, the researchers have confirmed the discovery of planet Barnard b, which orbits so close to the star that a year there lasts just 3.15 Earth days. At2 0 times closer to its star than Mercury is to the the sun, you might expect it to have scorching-hot surface temperatures. But because Barnard’s star is so dim, the planet’s surface temperature is a relatively mild 125 degrees Celsius. That does mean it’s too hot to be considered habitable, though.

“Barnard b is one of the lowest-mass exoplanets known and one of the few known with a mass less than that of Earth. But the planet is too close to the host star, closer than the habitable zone,” explained lead researcher Jonay González Hernández of the Instituto de Astrofísica de Canarias in Spain in a statement. “Even if the star is about 2,500 degrees cooler than our sun, it is too hot there to maintain liquid water on the surface.”

The team also found indications of three more possible exoplanets orbiting the star. It took five years of observations to confirm the existence of Barnard b using the ESPRESSO instrument on the European Southern Observatory’s Very Large Telescope, as it can measure the way that planets’ gravity causes the star to wobble. To determine if there really are another three planets in this system, the researchers will need even more readings.

“We now need to continue observing this star to confirm the other candidate signals,” said fellow researcher Alejandro Suárez Mascareño. “But the discovery of this planet, along with other previous discoveries such as Proxima b and d, shows that our cosmic backyard is full of low-mass planets.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Three tiny new moons spotted orbiting Uranus and Neptune
Neptune

Our solar system has a few new entries with the recent discovery of three moons of Uranus and Neptune. These ice giant planets are so far away that it is difficult to detect small moons orbiting them, especially when one of the recently discovered moons is the faintest moon ever discovered by a ground-based telescope.

Unlike Jupiter and Saturn, which both have a plethora of moons, Uranus is known to host 28 moons and Neptune just 16. That includes Uranus's new diminutive moon, which is just 5 miles across. Like Uranus' other moons, it will be named after a character from a Shakespeare plays, but a new name has not yet been chosen, so for now it is S/2023 U1.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more