Skip to main content

Listen to the spooky echoes of a black hole

As well as admiring beautiful pictures of space, you can also listen to those pictures via sonifications. These take images and translate them into eerie sounds to illustrate the wonderful and strange phenomena of our universe. NASA’s latest sonification illustrates the rings of X-rays that have been observed echoing around a black hole in the V404 Cygni system.

Quick Look: 'Listen' to the Light Echoes From a Black Hole

The sonification was made using data from NASA’s Chandra X-ray Observatory and Neil Gehrels Swift Observatory, both of which look in the X-ray wavelength. The data from the optical wavelength come from the Pan-STARRS telescope in Hawaii. Taken together, you can see how the X-ray bursts propagate outward from a central point which is the black hole. The black hole itself remains invisible, as it absorbs all light.

The black hole in V404 Cygni.
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. In these images, X-rays from Chandra are shown, along with optical data from the Pan-STARRS telescope that depict the stars in the field of view. X-ray: NASA/CXC/U.Wisc-Madison/S. Heinz et al.; Optical/IR: Pan-STARRS

However, even though black holes are themselves invisible, the material around them can glow brightly. As material like dust and gas is attracted to the black hole due to gravity, it joins into a swirling disk around the black hole called an accretion disk. This material rubs together and creates heat due to friction, and can become so hot that it glows.

Recommended Videos

In the case of the black hole in the V404 Cygni system, the black hole is pulling material away from a companion star and this material produces intense bursts of energy. This radiation includes X-rays, which are shot out from the black hole and interact with the dust and gas around it. These interactions are visible as concentric rings of X-rays which are created when the black hole flares.

When listening to the sonification, you can hear the melodious sounds of background stars, with each star visible in the optical wavelength translated into a note, with the volume and pitch of the note corresponding to the brightness of the star. On top of that, you can hear the scratchy sound of the bursts of X-ray radiation forming rings around the black hole.

The sounds start in the center of the image and move outward, covering the concentric rings detected by the X-ray telescopes. If you listen closely you can hear the difference between Chandra data, which is mapped onto higher pitch sounds, and Swift data, which is mapped onto lower pitches.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See 25 gorgeous images of space to celebrate Chandra’s 25th birthday
nasa chandra 25 anniversary 25th lg jpg 92

Today, July 23, marks the 25th anniversary of one of NASA's lesser known but highly prolific space telescopes. The Chandra X-ray Observatory was launched on July 23, 1999, and over its tenure has produced hundreds of stunning images of space -- including 25 new images that have been released to celebrate the occasion.

Unlike Hubble, which looks primarily at the same wavelengths as the human eye (called the optical or visible light range), or James Webb, which looks in the infrared, Chandra operates in the X-ray portion of the spectrum. That allows it to see effects of high-energy events like kilonovas, and to investigate objects like supermassive black holes. It also gives different views of supernovas and the remnants they leave behind.

Read more
Hubble finds mysterious and elusive black hole
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There's something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Read more
NASA 360-degree video shows what it’s like to plunge into a black hole
A black hole according to NASA's 360-degree video.

360 Video: NASA Simulation Shows a Flight Around a Black Hole

If you were having a bad day, plunging into a black hole would be enough to really top it off. Apparently, you’d experience a process known as “spaghettification” in which the black hole’s enormous gravitational force would compress your entire body while stretching it out at the same time, leaving you a bit noodle-like. Falling into a supermassive black hole would be a slightly less horrendous experience, apparently.

Read more