Skip to main content

Listen to the spooky echoes of a black hole

As well as admiring beautiful pictures of space, you can also listen to those pictures via sonifications. These take images and translate them into eerie sounds to illustrate the wonderful and strange phenomena of our universe. NASA’s latest sonification illustrates the rings of X-rays that have been observed echoing around a black hole in the V404 Cygni system.

Quick Look: 'Listen' to the Light Echoes From a Black Hole

The sonification was made using data from NASA’s Chandra X-ray Observatory and Neil Gehrels Swift Observatory, both of which look in the X-ray wavelength. The data from the optical wavelength come from the Pan-STARRS telescope in Hawaii. Taken together, you can see how the X-ray bursts propagate outward from a central point which is the black hole. The black hole itself remains invisible, as it absorbs all light.

The black hole in V404 Cygni.
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. In these images, X-rays from Chandra are shown, along with optical data from the Pan-STARRS telescope that depict the stars in the field of view. X-ray: NASA/CXC/U.Wisc-Madison/S. Heinz et al.; Optical/IR: Pan-STARRS

However, even though black holes are themselves invisible, the material around them can glow brightly. As material like dust and gas is attracted to the black hole due to gravity, it joins into a swirling disk around the black hole called an accretion disk. This material rubs together and creates heat due to friction, and can become so hot that it glows.

In the case of the black hole in the V404 Cygni system, the black hole is pulling material away from a companion star and this material produces intense bursts of energy. This radiation includes X-rays, which are shot out from the black hole and interact with the dust and gas around it. These interactions are visible as concentric rings of X-rays which are created when the black hole flares.

When listening to the sonification, you can hear the melodious sounds of background stars, with each star visible in the optical wavelength translated into a note, with the volume and pitch of the note corresponding to the brightness of the star. On top of that, you can hear the scratchy sound of the bursts of X-ray radiation forming rings around the black hole.

The sounds start in the center of the image and move outward, covering the concentric rings detected by the X-ray telescopes. If you listen closely you can hear the difference between Chandra data, which is mapped onto higher pitch sounds, and Swift data, which is mapped onto lower pitches.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
SpaceCamp, the amazing 1986 film, is stuck in a streaming black hole
The cast of SpaceCamp pose for a photo.

From left, Kate Capshaw, Joaquin Phoenix, Lea Thompson, Tate Donovan, Larry B. Scott, and Kelly Preston in 1986's "SpaceCamp." Image used with permission by copyright holder

The mid-1980s was a special time for movies. The Star Wars trilogy had wrapped up. We had two films with Indiana Jones. Ghostbusters was huge. Back to the Future. Revenge of the Nerds.

Read more
The universe has a cosmic ‘hum’ caused by merging black holes
This artist’s concept shows stars, black holes, and nebula laid over a grid representing the fabric of space-time.

In the last decade, astronomers made a major discovery, confirming the existence of gravitational waves. These long-theorized ripples in spacetime are created when extremely massive bodies such as two black holes collide, creating shocks that spread out across the universe and can be detected from millions of light-years away.

Now, a 15-year study has provided more evidence of these gravitational waves, including those at very low frequencies. A large international team in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration used three ground-based telescopes, the Arecibo Observatory in Puerto Rico, the Green Bank Telescope in West Virginia, and the Very Large Array in New Mexico, to observe pulsars. These rotating neutron stars give off regular pulses of energy, and these pulses can be affected by gravitational waves. By looking for small deviations in the pulses, the researchers were able to see how spacetime was being rippled.

Read more