Skip to main content

This iodine satellite propulsion system could help reduce space debris

A depiction of the iodine thruster developed by ThrustMe being used to change the orbit of a small satellite.
A depiction of the iodine thruster developed by ThrustMe being used to change the orbit of a small satellite. ThrustMe

One of the contributing factors to the ever-increasing problem of space debris is the rising number of small satellites being launched. When these satellites fail or are no longer needed, they are often left to float in their orbits, clogging up the space around our planet with potentially dangerous junk.

Some proposed solutions to this problem include schemes to capture and dispose of debris. But another approach is to create less debris in the future, by equipping satellites with technology so they can be destroyed when no longer needed. The European Space Agency (ESA) recently reported that an iodine thruster system has been used for the first time to do just that: Adjusting the orbit of a small satellite.

The idea is that when a satellite reaches the end of its life, it can self-destruct by using a thruster to change its orbit so it falls into the atmosphere and burns up. With the satellite burnt up, it wouldn’t leave debris in its old orbit.

The thruster technology is developed by a French company called ThrustMe, and is unusual in its use of iodine as a propellant. Iodine is cheaper than other propellants and is also non-toxic and stable, which makes it easier and simpler to work with. “When heated, it turns to gas without going through a liquid phase, which makes it ideal for a simple propulsion system,” ESA explains. “It is also denser than traditional propellants, so it occupies smaller volumes onboard the satellite.”

The first satellite to be moved using this iodine propulsion method was a telecommunications nanosat called SpaceTy Beihangkongshi-1. It was launched in November 2020 on a CZ-6 Long March 6 rocket from Taiyuan, China. To see whether the propellant system would work, it was test-fired earlier this month. With everything looking good, it was then used to actually move the orbit of the satellite.

In the future, similar systems could be attached to small satellites relatively cheaply, allowing them to self-destruct when no longer required and thus reducing space debris.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the first image of Earth from a new weather-monitoring satellite
First image of the full Earth disc from the Meteosat Third Generation Imager. The first image from Meteosat Third Generation – Imager 1 (MTG-I1) reveals a level of detail about the weather over Europe and Africa not previously possible from 36 000 km above Earth. The higher-resolution images provided by the instruments on board give weather forecasters more information about the clouds cloaking much of Europe and visible in the equatorial region of Africa and the Atlantic Ocean. Sand and sediment in the waters off Italy are also visible, as well as dust or smog being carried from south Asia. This degree of detail is not possible from the instruments on the Meteosat Second Generation satellites. The image was captured at 11:50 UTC on 18 March 2023 by the Flexible Combined Imager on MTG-I1.

A recently launched weather satellite has sent back its first image of Earth, showing our planet in gorgeous detail. The European Meteosat Third Generation Imager-1 was launched in December of last year with the aim of monitoring weather conditions across Europe and Africa, and it took this image from its location 22,000 miles above the Earth's surface.

The image was taken using the high-resolution Flexible Combined Imager instrument in March 2023, showing the areas of cloud and clear skies that can be seen over the Atlantic Ocean, as well as the European and African land masses.

Read more
How NASA’s astronaut class of 1978 changed the face of space exploration
Sally Ride NASA

When you look back on the long history of crewed spaceflight, one group stands out for its radical challenge to the conventional wisdom of who could become an astronaut. NASA's astronaut class of 1978 saw not only its first women and people of color working as astronauts such as Sally Ride and Guy Bluford, but also the first Asian American astronaut, El Onizuka, the first Jewish American astronaut, Judy Resnik, and the first LGBT astronaut, once again Sally Ride.

A new book, The New Guys: The Historic Class of Astronauts That Broke Barriers and Changed the Face of Space Travel, chronicles the story of this class and its impact on both NASA and the wider world’s perceptions of who could be an astronaut. We spoke to the author, Meredith Bagby, about this remarkable group of people and how they changed the face of human spaceflight.
Breaking the mold
Throughout the 50s and 60s, NASA almost exclusively chose fighter pilots for its early human spaceflight program, Project Mercury. That meant that not only were astronaut groups like the famous Mercury Seven entirely composed of white men, but they also came from very similar military backgrounds.

Read more
NASA launches fresh water observation satellite
nasa swot launch

NASA has launched its first mission to survey fresh water systems from a global perspective. The Surface Water and Ocean Topography (SWOT) mission launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Friday, December 16 at 3:46 a.m. PT. The SWOT spacecraft was launched using a SpaceX Falcon 9 rocket.

The mission aims to observe not only the oceans but also fresh water systems such as lakes and rivers, making it the first mission to do so from space. The intention is for the mission to study the flow of water between these systems and the ocean and to observe the depth of water to get a more complete picture of the flow of water across the planet.

Read more