Skip to main content

After years of delays, the James Webb Space Telescope will officially launch in 2018

james webb satellite to finally launch in 2018 jwst1
NASA
The Hubble Space Telescope’s days of ruling outer space appear to be numbered as the European Space Agency just announced its mammoth James Webb Telescope will officially launch into the wild blue yonder in roughly three years. Through a collaborative effort with NASA, the Canadian Space Agency, and the Space Telescope Science Institute, the ESA’s 21-foot telescope will ride aboard an Ariane 5 rocket scheduled to launch from French Guiana in October of 2018. Its purpose? To look further back in time than any telescope before it and to gather light from galaxies created during our universe’s genesis. No big deal.

Formerly dubbed the Next Generation Space Telescope, development of the JWST dates all the way back to around 1996 though initial research for a Hubble replacement began in the late 1980s. After getting a name change in 2002, the JWST was originally scheduled to make its maiden voyage into space in 2007, but a rash of rising costs and delays significantly stunted the project. In fact, Congress almost nixed the JWST altogether in 2011 while attempting to reduce NASA’s yearly budget. Luckily for those involved, the House and Senate instead decided to cap funding at $8 billion.

“The years of hard work and excellent collaboration between NASA, ESA and Arianespace teams that have made this possible are testimony to their dedication to the world’s next great space telescope,” said NASA’s JWST Program Director Eric Smith in a press release. “The agreement is a significant milestone for the JWST Program.”

Full-scale model of the James Webb Space Telescope at SXSW
Full-scale model of the James Webb Space Telescope at SXSW NASA

It had long been the goal of the JWST team to launch the telescope in 2018 though without an actual launch contract signed, nothing was officially set in stone. Now, with the contract in tow, all that stands between the JWST and reaching its intended orbit roughly 1 million miles from Earth is a rocket failure or delayed launch — an incredibly positive turn of events considering its status just four years ago.

“With this key contract now in place with our long-standing partners, we are closer than ever to see scientific goals of this next-generation space observatory realized,” said Jan Woerner, the European Space Agency’s Director General.

Unlike the Hubble Space Telescope, which resides in low Earth orbit, the JWST will actually spend its life orbiting the Sun (as noted earlier, roughly 1 million miles from Earth). Dubbed the second Lagrange point (or L2), this special orbit path for the telescope allows it to stay in line with Earth as it moves around the Sun. This movement allows JWST’s massive sun shield the opportunity to protect it from the heat and light of the Sun, Earth, and Moon. Its shield is important since the JWST will primarily observe infrared signals from objects very far away, readings that are easily disrupted by other bright, hot sources (i.e. the Sun, Earth, and Moon).

As touched on above, these scientific goals are quite lofty. According to NASA, the JWST “will examine every phase of cosmic history” by serving four primary themes. First, it will essentially serve as a powerful time machine, possessing the capability to look back some 13.5 billion years using infrared vision. Scientists anticipate being able to see the first stars and galaxies formed in our early universe. This same infrared vision also allows scientists to compare early galaxies to today’s “grand spirals and ellipticals,” shedding light on the evolution of a galaxy over billions of years.

An Ariane 5 rocket on launch pad — November 2015
An Ariane 5 rocket on launch pad — November 2015 Arianespace

Furthermore, the JWST features the capacity to look right through massive clouds of dust (previously invisible to telescopes like Hubble), allowing scientists to see exactly where the birth of stars and planetary systems occur. Again utilizing its revolutionary infrared camera, it’ll be able to peer into parts of stars, nebulas, and otherwise that have never been seen before. Last, but not least, the telescope will also help scientists learn more about the atmospheres of extrasolar planets while searching for the building blocks of life.

“The James Webb Space Telescope will be a giant leap forward in our quest to understand the Universe and our origins,” NASA’s JWST landing page states. “JWST will examine every phase of cosmic history: from the first luminous glows after the Big Bang to the formation of the galaxies, stars, and planets to the evolution of our own solar system.”

Currently, the JWST is undergoing a series of final cryo-verification tests at NASA’s Goddard Space Flight Center. Though no exact date was provided in the press release, the ESA’s JWST Project Manager Peter Jensen says the project is “maintaining a steady pace towards” its expected launch in October of 2018.

Rick Stella
Former Digital Trends Contributor
Rick became enamored with technology the moment his parents got him an original NES for Christmas in 1991. And as they say…
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more
James Webb observes extremely hot exoplanet with 5,000 mph winds
This artist’s concept shows what the hot gas-giant exoplanet WASP-43 b could look like. WASP-43 b is a Jupiter-sized planet circling a star roughly 280 light-years away, in the constellation Sextans. The planet orbits at a distance of about 1.3 million miles (0.014 astronomical units, or AU), completing one circuit in about 19.5 hours. Because it is so close to its star, WASP-43 b is probably tidally locked: its rotation rate and orbital period are the same, such that one side faces the star at all times.

Astronomers using the James Webb Space Telescope have modeled the weather on a distant exoplanet, revealing winds whipping around the planet at speeds of 5,000 miles per hour.

Researchers looked at exoplanet WASP-43 b, located 280 light-years away. It is a type of exoplanet called a hot Jupiter that is a similar size and mass to Jupiter, but orbits much closer to its star at just 1.3 million miles away, far closer than Mercury is to the sun. It is so close to its star that gravity holds it in place, with one side always facing the star and the other always facing out into space, so that one side (called the dayside) is burning hot and the other side (called the nightside) is much cooler. This temperature difference creates epic winds that whip around the planet's equator.

Read more