Skip to main content

James Webb Space Telescope struck by micrometeoroid

NASA’s James Webb Space Telescope recently suffered a micrometeoroid strike to one of its 18 primary mirror segments, though engineers working on the mission insist the damage has been minimal.

The recently launched Webb telescope is the most powerful space observatory ever deployed and will soon start peering into deep space in a bid to learn more about the origins of the universe. The $10 billion multiyear mission is the result of a partnership between NASA, the European Space Agency, and the Canadian Space Agency, and has been decades in the making.

While it’s normal for spacecraft to experience micrometeoroid impacts, NASA noted that this particular speck of high-speed space dust, which hit the telescope between May 23 and May 25, was larger than any it had forecast when modeling such events prior to the mission’s launch in December 2021.

Analysis of the damage to the mirror segment is ongoing, but NASA said the early indications are that the telescope is continuing to perform “at a level that exceeds all mission requirements despite a marginally detectable effect in the data.”

Commenting on the strike, Paul Geithner, technical deputy project manager at NASA’s Goddard Space Flight Center, said: “We always knew that Webb would have to weather the space environment, which includes harsh ultraviolet light and charged particles from the sun, cosmic rays from exotic sources in the galaxy, and occasional strikes by micrometeoroids within our solar system. We designed and built Webb with performance margin — optical, thermal, electrical, mechanical — to ensure it can perform its ambitious science mission even after many years in space.”

The telescope, which is now in its observing spot about a million miles from Earth, has been able to adjust the affected segment in a way that cancels out a portion of the distortion caused by the micrometeoroid impact.

In a bid to avoid such strikes, NASA is able to instruct the spacecraft to perform protective maneuvers that move the telescope’s delicate optics away from known meteor showers heading its way.

However, the space agency notes that the recent hit was an “unavoidable chance event” that was not part of a meteor shower.

In response to the unexpected incident, NASA has formed a specialized team of engineers to examine if there are any ways it can help the spacecraft to reduce the effects of future micrometeoroid hits of this scale.

“With Webb’s mirrors exposed to space, we expected that occasional micrometeoroid impacts would gracefully degrade telescope performance over time,” said Lee Feinberg, Webb optical telescope element manager at NASA Goddard. “Since launch, we have had four smaller measurable micrometeoroid strikes that were consistent with expectations and this one more recently that is larger than our degradation predictions assumed. We will use this flight data to update our analysis of performance over time and also develop operational approaches to assure we maximize the imaging performance of Webb to the best extent possible for many years to come.”

The size of the micrometeoroid was clearly something of a surprise for the Webb team, but the telescope’s careful design has ensured that it’s able to continue to function as expected.

The mission team is set to release the telescope’s first images in July as scientists seek to use the powerful observatory to unlock some of the secrets of the universe.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb gets a stunning view of a far-off planetary system
This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time.

As well as helping us learn about the earliest galaxies in the universe and taking stunning images of parts of our solar system, the James Webb Space Telescope is also letting astronomers learn more about how planets form. Although we know that planets form from disks of dust and gas around stars called protoplanetary disks, there's still a lot we don't know about this process, particularly about how forming planets affect the rest of the system around them.

So it was an exciting moment when astronomers recently used Webb to study an asteroid belt in another planetary system and were able to peer into the rings of dust around the star to see where planets were forming.

Read more
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more