Skip to main content

Horrifying up-close images of a sunspot captured by the Inouye Solar Telescope

A stunning new set of images from the Daniel K. Inouye Solar Telescope shows the surface of the sun in incredible detail — including frankly disturbing images of sunspots seen up close. The images have been collected over the telescope’s first year of operations and have been shared as a preview of the data that can be expected from this tool.

Located in Maui, Hawai’i, the Inouye Solar Telescope is specifically designed to be able to look at the surface of the sun to learn about its magnetic fields, which are important for understanding the space weather which is caused by solar eruptions. The newly released images show calmer, quieter areas of the sun’s surface and the deep black of sunspots, which are temporary dark regions that periodically appear on the surface, or photosphere.

A mosaic of new solar images produced by the Inouye Solar Telescope was released today, previewing solar data taken during the telescope’s first year of operations during its commissioning phase. Images include sunspots and quiet-Sun features.
A mosaic of new solar images produced by the Inouye Solar Telescope was released today, previewing solar data taken during the telescope’s first year of operations during its commissioning phase. Images include sunspots and quiet-Sun features. NSF/AURA/NSO

Sunspots can be as small as 10 miles across to as large as 100,000 miles, and they typically last for a period between a few days and a few months. Their appearance is related to the solar cycle, which is an 11-year period over which the sun’s activity varies, with more sunspots observed during certain parts of the cycle.

One reason that scientists want to study sunspots is to understand and eventually predict solar activity like flares or coronal mass ejections. These events send bursts of energy and matter out from the sun, which travel through the solar system and affect other planets in a phenomenon called space weather. These events can cause damage to satellites and would be dangerous for any humans who were on missions outside of low-Earth orbit, so being able to predict them would be valuable.

This image reveals the fine structures of a sunspot in the photosphere. Within the dark, central area of the sunspot’s umbra, small-scale bright dots, known as umbral dots, are seen. The elongated structures surrounding the umbra are visible as bright-headed strands known as penumbral filaments. Umbra: Dark, central region of a sunspot where the magnetic field is strongest. Penumbra: The brighter, surrounding region of a sunspot’s umbra characterized by bright filamentary structures.
This image reveals the fine structures of a sunspot in the photosphere. Within the dark, central area of the sunspot’s umbra, small-scale bright dots, known as umbral dots, are seen. The elongated structures surrounding the umbra are visible as bright-headed strands known as penumbral filaments. Umbra: Dark, central region of a sunspot where the magnetic field is strongest. Penumbra: The brighter, surrounding region of a sunspot’s umbra characterized by bright filamentary structures. NSF/AURA/NSO Image Processing: Friedrich Wöger(NSO), Catherine Fischer (NSO) Science Credit: Rolf Schlichenmaier at Leibniz-Institut für Sonnenphysik (KIS)

To study the sunspots, the telescope has a 4-meter mirror and instruments like a slit spectrograph and high-resolution cameras that can detect changes to the sun’s surface. The images above were collected using the telescope’s Visible-Broadband Imager (VBI), a set of two cameras that can take images of the sun’s surface and lower atmosphere.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures stunning image of supernova remnant Cassiopeia A
Cassiopeia A (Cas A) is a supernova remnant located about 11,000 light-years from Earth in the constellation Cassiopeia. It spans approximately 10 light-years. This new image uses data from Webb’s Mid-Infrared Instrument (MIRI) to reveal Cas A in a new light.

A stunning new image from the James Webb Space Telescope shows a famous supernova remnant called Cassiopeia A, or Cas A. When a massive star comes to the end of its life and explodes in a huge outpouring of light and energy called a supernova, it leaves behind a dense core that can become a black hole or a neutron star. But that's not all that remains after a supernova: the explosion can leave its mark on nearby clouds of dust and gas that are formed into intricate structures.

The image of Cas A was taken using Webb's MIRI instrument, which looks in the mid-infrared range. Located 11,000 light-years away, Cassiopeia A is one of the brightest objects in the sky in the radio wavelength, and is also visible in the optical, infrared, and X-ray wavelengths. To see the different features picked up in different wavelengths, you can look at the slider comparison of the Webb infrared image alongside a Hubble visible light image of the same object.

Read more
New Mercury images offer boost for Solar Orbiter mission
Mercury's silhouetted in front of the sun's atmosphere.

Operated by NASA and the European Space Agency (ESA), the Solar Orbiter mission launched in February 2020.

The goal of the mission is to capture the closest images of the sun to date while also monitoring the solar wind and the sun’s polar regions as part of efforts to better understand the solar cycle. The work could unravel some of the mysteries of our sun and also help make astronauts safer during long-duration missions to deep space.

Read more
See a stunning field of galaxies captured by James Webb Space Telescope
A crowded field of galaxies throngs this Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope, along with bright stars crowned with Webb’s signature six-pointed diffraction spikes. The large spiral galaxy at the base of this image is accompanied by a profusion of smaller, more distant galaxies which range from fully-fledged spirals to mere bright smudges. Named LEDA 2046648, it is situated a little over a billion light-years from Earth, in the constellation Hercules.

Stunning images from the James Webb Space Telescope continue to entrance, and recently the researchers using the telescope have shared a gorgeous image of a field of galaxies as part of the Webb Picture of the Month collection.

The image shows a spattering of different background galaxies, while the foreground shows bright individual stars and a bright spiral galaxy at the bottom called LEDA 2046648. Located around a billion light-years from Earth, this galaxy is relatively much closer to us than the far-off background galaxies which is why it is so prominent in the image.

Read more