Skip to main content

Astronomers develop ‘early warning system’ for stars about to go supernova

One of the most dramatic cosmic events is a supernova, when a massive star runs out of fuel. The star explodes in an enormous burst of energy that can be seen even in other galaxies. We know essentially when these supernovae happen, but we aren’t able to predict exactly when any given star will go supernova. Now, though, a team of astronomers has come up with an “early warning system” for stars approaching this critical point.

The astronomers from Liverpool John Moores University and the University of Montpellier simulated the development of a group of pre-supernova stars called red supergiants, which are some of the largest stars (though not necessarily the most massive). They include our famous neighbor Betelgeuse. These stars used to be massive stars around eight to 20 times the mass of the sun, but as their fuel runs out, they switch from fusing hydrogen to fusing helium, and they puff up to a larger size while cooling down.

Related Videos
This artist’s impression shows the supergiant star Betelgeuse as it was revealed thanks to different state-of-the-art techniques on ESO’s Very Large Telescope (VLT), which allowed two independent teams of astronomers to obtain the sharpest ever views of the supergiant star Betelgeuse. They show that the star has a vast plume of gas almost as large as our Solar System and a gigantic bubble boiling on its surface. These discoveries provide important clues to help explain how these mammoths shed material at such a tremendous rate.
This artist’s impression shows the supergiant star Betelgeuse as it was revealed thanks to different state-of-the-art techniques on European Southern Observatory ’s Very Large Telescope. European Southern Observatory/L. Calçada

The researchers found that these red supergiant stars become suddenly much fainter in their last few months of life. Their brightness drops by as much as a hundred times as they produce dusty material that obscures the light they give off, making them appear fainter. This dropping brightness will be a clue to an impending supernova.

“The dense material almost completely obscures the star, making it 100 times fainter in the visible part of the spectrum. This means that, the day before the star explodes, you likely wouldn’t be able to see it was there,” lead author Benjamin Davies of Liverpool John Moores University explained in a statement. “Until now, we’ve only been able to get detailed observations of supernovae hours after they’ve already happened. With this early-warning system, we can get ready to observe them in real time, to point the world’s best telescopes at the precursor stars, and watch them getting literally ripped apart in front of our eyes.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Hubble captures the beautiful aftermath of a supernova explosion
This image from the NASA/ESA Hubble Space Telescope shows the tattered remnant of a supernova — a titanic explosion marking the end of the life of a dying star. This object — known as DEM L249 — is thought to have been created by a Type 1a supernova during the death throes of a white dwarf. While white dwarfs are usually stable, they can slowly accrue matter if they are part of a binary star system. This accretion of matter continues until the white dwarf reaches a critical mass and undergoes a catastrophic supernova explosion, ejecting a vast amount of material into space in the process.

Supernovas might spell the end for the star they happen to, but they aren't only destructive phenomena. When a star approaches the end of its life and runs out of fuel, it explodes in an enormous outpouring of energy, leaving behind a small, dense core that becomes a black hole or a neutron star. This explosion, though destructive on an epic scale, can also leave behind a beautiful remnant created by the explosion's shock wave.

A image recently released by the Hubble Space Telescope team shows one such supernova remnant, called DEM L249. Captured by Hubble's Wide Field Camera 3 instrument and located in the constellation of Mensa, this delicate structure is formed from dust and gas ejected outward from the star's location by the force of the blast.

Read more
Astronomers simulate the early universe and the birth of the first galaxies
Still image from a Thesan simulation showing the universe 251 million years after the Big Bang. The orange halos represent the burst of radiation, or light, outpouring from early galaxies.

An international collaboration of astronomers has created the most detailed simulation yet of the early stages of the universe. The simulation can be seen in the video below, showing the first light spreading through the darkness in a period called the epoch of reionization, around 13 billion years ago.

Internal 3D view of the gas density evolution in Thesan-1

Read more
Astronomers spot a new planet orbiting our neighboring star
This artist’s impression shows a close-up view of Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System.

At just over four light-years away, the low-mass star Proxima Centauri is practically next door to us, cosmically speaking. It is known to host two exoplanets, but recent research using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) has shown that these two planets may have a baby brother, in the form of one of the lightest exoplanets ever found.

The newly discovered planet, called Proxima d, orbits extremely close to its star at just 2.5 million miles away -- less than one-tenth of the distance between Mercury and the sun. It is so close that it takes just five days to complete an orbit, meaning it is too close to be in the habitable zone (where liquid water could be present on its surface).

Read more