Skip to main content
  1. Home
  2. James Webb Space Telescope

James Webb Space Telescope

A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

James Webb images capture the galactic winds of newborn stars

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy: Messier 82.
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The expansion rate of the universe still has scientists baffled

james webb hubble live tracker screenshot 2024 03 06 220259

See what James Webb and Hubble are observing right now with this tool

Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

This famous supernova remnant is hiding a secret

This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

See 19 gorgeous face-on spiral galaxies in new James Webb data

This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

James Webb snaps a stunning stellar nursery in a nearby satellite galaxy

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

James Webb Space Telescope celebrated on new stamps

This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

James Webb captures a unique view of Uranus’s ring system

The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

James Webb spots tiniest known brown dwarf in stunning star cluster

A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

James Webb provides a second view of an exploded star

The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

James Webb telescope captures a dramatic image of newborn star

This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.

James Webb finds that rocky planets could form in extreme radiation environment

An artists rendering of a blue and white exoplanet known as WASP-80 b, set on a star-studded black background. Alternating horizontal layers of cloudy white, grey and blue cover the planets surface. To the right of the planet, a rendering of the chemical methane is depicted with four hydrogen atoms bonded to a central carbon atom, representing methane within the exoplanet's atmosphere. An artist’s rendering of the warm exoplanet WASP-80 b whose color may appear bluish to human eyes due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope, similar to the planets Uranus and Neptune in our own solar system.

How astronomers used James Webb to detect methane in the atmosphere of an exoplanet

Scientists using the James Webb Space Telescope recently announced they had made a rare detection of methane in an exoplanet atmosphere.
The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A vast region of ionised hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionised hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionised region, covering about 25 light-years. A cluster of protostars – stars that are still forming and gaining mass – are producing outflows that glow like a bonfire at the base of the large infrared-dark cloud, indicating that they are emerging from the cloud’s protective cocoon and will soon join the ranks of the more mature stars around them. Smaller infrared-dark clouds dot the scene, appearing like holes in the starfield. Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study. This includes the rose-coloured clouds on the right side of the image, which have never been seen in such detail.

Stunning James Webb image shows the beating heart of our Milky Way

A new image from the James Webb Space Telescope shows the heart of our galaxy, in a region close to the supermassive black hole at the center of the Milky Way.
An artist's rendition of NASA's SPHEREx space mission.

Scientists disagree on how fast the universe is expanding, and new tech is making it worse

Usually new tech brings us closer to understanding more of the universe, but in the field of cosmology, one uncertainty is only getting worse.
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

James Webb investigates a super puffy exoplanet where it rains sand

One of the least dense exoplanets known was recently investigated using James Webb, and the planet's weather seems is as strange as its puffiness.
This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, in general the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created.

Webb and Hubble work together to image the Christmas Tree Galaxy Cluster

A beautiful new image of a cluster of thousands of galaxies combines data from both the Hubble Space Telescope and the James Webb Space Telescope.
NASA’s James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light.

James Webb snaps an image of the famous and beautiful Crab Nebula

Located 6,500 light-years away, the Crab Nebula is famous among astronomers for its elaborate and beautiful structure.
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

James Webb observes merging stars creating heavy elements

The James Webb Space Telescope has detected heavy elements being created in a star merger for the first time.
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

Researchers discover a 320-mph jet stream around Jupiter’s equator

Researchers have used data from the James Webb Space Telescope to uncover a new feature of Jupiter's dramatic and turbulent atmosphere.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).

James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors.
A short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster.

Zoom into an incredibly detailed James Webb image of the Orion nebula

A new image from the James Webb Space Telescope shows the majesty of the gorgeous Orion nebula in tremendous detail.
New Swatch designs featuring images captured by the James Webb Space Telescope.

Swatch lets you put a stunning Webb space image on a watch face

Swatch has partnered with the European Space Agency to let you custom design a watch face with a beautiful image captured by the James Webb Space Telescope.
Webb’s NIRCam (Near Infrared Camera) captured a picture of the surface of Jupiter’s moon Europa.

James Webb spots carbon dioxide on Europa, supporting theory of habitability

Europa is one of the most likely places in the solar system to support life beyond Earth, and now new findings could make that possibility more likely.
Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate.

New James Webb data shows that the crisis in cosmology persists

In the last few decades, one big question has created a crisis in the field of cosmology: How fast is the universe expanding?
NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a young star, an infantile analogue of our Sun. Herbig-Haro objects are formed when stellar winds or jets of gas spewing from newborn stars form shock waves colliding with nearby gas and dust at high speeds.

James Webb captures the stunning outflows from an infant star

A gorgeous new image from the James Webb Space Telescope shows a dramatic sight created by the outbursts of energy coming from a very young star.
This illustration shows what exoplanet K2-18 b could look like based on science data. K2-18 b, an exoplanet 8.6 times as massive as Earth, orbits the cool dwarf star K2-18 in the habitable zone and lies 120 light years from Earth.

James Webb sees evidence of an ocean-covered ‘Hycean’ exoplanet

James Webb has once again peered into the atmosphere of an exoplanet, and this time it has identified indications that the planet could be covered in ocean.
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

James Webb telescope captures stunning view of a famous supernova remnant

The James Webb Space Telescope has provided one of the most detailed views yet of the stunning supernova remnant SN 1987A, created from a destructive explosion.
The graceful winding arms of the grand-design spiral galaxy M51 stretch across this image from the NASA/ESA/CSA James Webb Space Telescope. Unlike the menagerie of weird and wonderful spiral galaxies with ragged or disrupted spiral arms, grand-design spiral galaxies boast prominent, well-developed spiral arms like the ones showcased in this image. This galactic portrait is a composite image that integrates data from Webb’s Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI).

James Webb captures the magnificent Whirlpool Galaxy in two wavelengths

A new image from the James Webb Space Telescope shows the Whirlpool Galaxy, a galaxy so picturesque it is designated a grand-design spiral galaxy.
The Ring Nebula captured by Webb’s IRCam (Near-Infrared Camera).

Webb telescope captures Ring Nebula in gorgeous detail

The James Webb Space Telescope has just served up a couple more sublime images, this time showing the Ring Nebula in astonishing detail.
A massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected, nicknamed Earendel.

James Webb captures image of the most distant star ever discovered

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered, named Earendel.
The shape of a question mark captured by the James Webb Space Telescope.

Scientists explain cosmic ‘question mark’ spotted by Webb space telescope

Scientists have been intrigued by the appearance of a question mark captured in deep space by the James Webb Space Telescope.
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

James Webb telescope captures the gorgeous Ring Nebula in stunning detail

A new image from the James Webb Space Telescope shows the stunning Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra.
The irregular galaxy NGC 6822.

See how James Webb instruments work together to create stunning views of space

New images from the James Webb Space Telescope show incredible views of the dusty galaxy NGC 6822 - and the different views captured by Webb instruments.