Skip to main content

Black holes all look like donuts, regardless of their size

The release of a remarkable image of the black hole at the center of our galaxy isn’t only an incredible scientific achievement — it also agrees precisely with predictions about what black holes are and how these strange objects are formed by the power of gravity.

The black hole, called Sagittarius A*, is a type called a supermassive black hole, which is found at the center of almost all galaxies. Ours is on the smaller end for such giants: At 4.3 million times the mass of the sun, it’s much smaller than other monsters like the one is Messier 87 which was imaged in 2019 and which is 6.5 billion times the mass of the sun.

The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein's theory of general relativity. The images shown here were created by UArizona's Chi-kwan Chan.
The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein’s theory of general relativity. The images shown here were created by UArizona’s Chi-kwan Chan. Ben Prather/EHT Theory Working Group/Chi-Kwan Chan

However, images of these two black holes look notably similar, both showing a distinctive donut shape. And that agrees precisely with physicists’ predictions, which said that black holes would appear the same no matter what size they are.

“The fact that the light appears like a ring, with the black shadow inside, tells you it’s purely gravity,” black hole researcher Dimitrios Psaltis of the University of Arizona explained in a statement. “It’s all predicted by Einstein’s theory of general relativity, the only theory in the cosmos that does not care about scale.”

This scaling is unusual because most things that exist at different scales look very different — Psaltis gives the example of an ant and an elephant, which look very different because of, among other factors, the way their mass is supported. But black holes aren’t like that, it seems, as they are the same whether big or small. Messier 87 is 1,500 times more massive than Sagittarius A* and is vastly larger as well, as you can see in a comparison image from the European Southern Observatory. But the two look very similar.

Size comparison of the two black holes imaged by the Event Horizon Telescope (EHT) Collaboration: M87*, at the heart of the galaxy Messier 87, and Sagittarius A* (Sgr A*), at the centre of the Milky Way.
Size comparison of the two black holes imaged by the Event Horizon Telescope (EHT) Collaboration: M87*, at the heart of the galaxy Messier 87, and Sagittarius A* (Sgr A*), at the center of the Milky Way. EHT collaboration (acknowledgment: Lia Medeiros, xkcd)

That means that even very small black holes, if we were able to image them, would look like the images of Sagittarius A* and Messier 87. They would all show that similar donut shape.

“Wherever we look, we should see donuts, and they all should look more or less the same,” Psaltis said, “and the reason this is important — besides the fact that it confirms our prediction – is that nobody likes it. In physics, we tend to dislike a world where things don’t have an anchor point, a defined scale.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
SpaceCamp, the amazing 1986 film, is stuck in a streaming black hole
The cast of SpaceCamp pose for a photo.

From left, Kate Capshaw, Joaquin Phoenix, Lea Thompson, Tate Donovan, Larry B. Scott, and Kelly Preston in 1986's "SpaceCamp." Image used with permission by copyright holder

The mid-1980s was a special time for movies. The Star Wars trilogy had wrapped up. We had two films with Indiana Jones. Ghostbusters was huge. Back to the Future. Revenge of the Nerds.

Read more