Skip to main content

Exoplanet with eccentric orbit discovered in the habitable zone of a red dwarf

Astronomers have found a planet in the habitable zone of a red dwarf star, but its orbit is so elongated that it would have wildly variable temperatures and likely couldn’t support life.

The planet, named TOI-2257 b, was first spotted using data from NASA’s planet-hunting telescope TESS (Transiting Exoplanet Survey Satellite) and then observed in more detail using the Las Cumbres Observatory Global Telescope and the SAINT-EX telescope in Mexico. Using the SAINT-EX observations, the researchers were able to confirm that a planet was orbiting the red dwarf star every 35 days.

The SAINT-EX telescope.
The SAINT-EX telescope Institute of Astronomy, UNAM / E. Cadena

As red dwarf stars are smaller and cooler than our sun, the habitable zone around them, or the area in which liquid water could exist on the surface of an orbiting planet, is also different. Planets orbiting red dwarf stars could have liquid water even if they orbit much closer than the Earth orbits the sun. And having the planet close to the star also makes it easier to detect.

However, even though TOI-2257 b is in the habitable zone, don’t make any plans to move there just yet. The first issue with habitability is that the planet has a radius 2.2 times that of Earth, meaning it is large and likely gaseous with high atmospheric pressure. The second and most intriguing fact about this planet is that it has a highly eccentric orbit, meaning that its orbit traces an elliptical or oval shape rather than a circle. Sometimes the planet is close to its star, and other times it is further away.

In fact, it has the most eccentric orbit of a planet around a cool star discovered to date. And that has a big effect on surface temperatures there.

“We found that TOI-2257 b does not have a circular, concentric orbit,” lead researcher Nicole Schanche explained in a statement. “In terms of potential habitability, this is bad news. While the planet’s average temperature is comfortable, it varies from -80°C to about 100°C depending on where in its orbit the planet is, far from or close to the star.”

The researchers are curious as to why the planet’s orbit is so eccentric, which could be due to a giant planet in the same system affecting this planet’s orbit. To learn more, the researchers hope that the planet could be studied further using the James Webb Space Telescope.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb investigates a super puffy exoplanet where it rains sand
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

Exoplanets come in many forms, from dense, rocky planets like Earth and Mars to gas giants like Jupiter and Saturn. But some planets discovered outside our solar system are even less dense than gas giants and are a type known informally as super-puff or cotton candy planets. One of the least dense exoplanets known, WASP-107b, was recently investigated using the James Webb Space Telescope (JWST) and the planet's weather seems to be as strange as its puffiness.

The planet is more atmosphere than core, with a fluffy atmosphere in which Webb spotted water vapor and sulfur dioxide. Strangest of all, Webb also saw silicate sand clouds, suggesting that it would rain sand between the upper and lower layers of the atmosphere. The planet is almost as big as Jupiter but has a tiny mass similar to that of Neptune.

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more
Astronomers discover how tiny dwarf galaxies form ‘fossils’
A dwarf galaxy in the throes of transitioning to an ultra-compact dwarf galaxy as it’s stripped of its outer layers of stars and gas by a nearby larger galaxy.

Galaxies come in many different shapes and sizes, including those considerably smaller than our Milky Way. These smaller galaxies, called dwarf galaxies, can have as few as 1,000 stars, compared to the several hundred billion in our galaxy. And when these dwarf galaxies age and begin to erode away, they can transform into an even smaller and more dense shape, called an ultra-compact dwarf galaxy.

The Gemini North telescope has recently been studying more than 100 of these eroding dwarf galaxies, seeing how they lose their outer stars and gas to become ultra-compact dwarf galaxies or UCDs.

Read more