Skip to main content

Astronomers discover black hole in Earth’s galactic backyard

Astronomers have discovered the closest black hole to Earth ever found, located just 1,000 light-years away.

It is part of an unusual triple system called HR 6819, consisting of two stars and a black hole all orbiting the same point, according to research published in the journal Astronomy & Astrophysics.

Black holes absorb everything that comes close to them, even light, so it is essentially impossible to observe one directly. In this case, the astronomers with the European Southern Observatory (ESO) were able to locate the black hole using the MPG/ESO 2.2-meter telescope at the La Silla Observatory in Chile to look at the movements of one of the other stars in the system.

Milky Way shines over snowy La Silla
La Silla Observatory sitting beneath a spray of stars from our Milky Way. On the far left is the MPG/ESO 2.2-metre telescope, which has snow on its dome. ESO/José Francisco Salgado

“The main effect this black hole has is the gravitational pull on the companion star,” Dietrich Baade, ESO’s Emeritus Astronomer, told Digital Trends. “The companion star is visible to the naked eye, so it’s quite easy to take high-resolution and high-quality spectra, and to measure from the Doppler shift the rate of velocity of the star.”

The Doppler shift is the phenomenon where the frequency of waves appears to change due to motion between the source and the observer — like how a siren sounds different when an ambulance approaches and then drives away.

Using this shift, the researchers saw how the star was moving and inferred the presence of a black hole.

“If the star is moving around, there must be a reason for that,” Baade explained. “And since stars interact only gravitationally, at least at that level, there must be a big mass nearby. And if one cannot see that mass, and the mass is above a certain level, then it must be a black hole.”

Using the observations, the researchers were able to calculate that the object in the HR 6819 system has a mass about five times that of our sun, or about 1.5 million times that of the Earth, indicating that it must be a black hole.

The system is also notable for an unusual feature, being a triple system in which two stars and one black hole orbit around the same center of mass.

This artist’s impression shows the orbits of the objects in the HR 6819 triple system
This artist’s impression shows the orbits of the objects in the HR 6819 triple system. This system is made up of an inner binary with one star (orbit in blue) and a newly discovered black hole (orbit in red), as well as a third star in a wider orbit (also in blue). ESO/L. Calçada

“This triple system is a type called a hierarchical system, which means that two of the objects are very close to each other and the third object is rather far away,” Baade said.

“In the inner binary, there is a luminous star which is bright enough to be seen with the naked eye, which is orbited by the black hole. And then these two stars, in turn, are orbited by a second luminous star which is further away.”

The black hole’s triple system could help astronomers study elusive gravitational waves in the future. The system itself is not likely to be a source of these waves, but what it does provide is a model of what a system with two black holes orbiting each other might look like.

Two Black Holes Merging
An illustration of two black holes merging CalTech

When two binary black holes merge, the tremendous amount of energy this event gives off creates a dramatic distortion of space. This distortion would be one of the strongest sources of gravitational waves in the universe, and would be detectable through projects like LIGO (Laser Interferometer Gravitational-Wave Observatory).

But astronomers aren’t sure what would cause a binary pair of black holes to merge. One suggestion is that the mergers could be caused by a third star orbiting the pair.

By studying the movement of the two stars and one black hole in the HR 6819 system, astronomers can build up a blueprint of triple systems that could teach them about how these binary black hole mergers could occur.

Baade said he’s been studying this particular system on and off for 20 years.

While Baade said the researchers were thrilled to finally nail down the system’s unique composition, it was a bittersweet victory: The team’s leader, Stan Štefl died in a car accident in 2014 before their findings could be published.

“It was very rewarding to bring it to this positive and conclusive end,” Baade said. “But it’s of course very sad that our friend Stan Štefl could not celebrate the success with us.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Unique black hole is trailed by 200,000 light-year-long tail of stars
This is an artist's impression of a runaway supermassive black hole that was ejected from its host galaxy as a result of a tussle between it and two other black holes. As the black hole plows through intergalactic space it compresses tenuous gas in front to it. This precipitates the birth of hot blue stars. This illustration is based on Hubble Space Telescope observations of a 200,000-light-year-long contrail of stars behind an escaping black hole.

Black holes might have a reputation as terrifying monsters, devouring all they come into contact with -- but they can be a force of creation too, feeding the formation of new stars. Researchers using data from the Hubble Space Telescope recently spotted an unexpectedly huge trail of stars forming in the wake of a rogue black hole.

While most very large black holes, called supermassive black holes, sit at the center of galaxies, occasionally these enormous beasts can be found wandering alone in the depths of space. That's the case with the recently discovered black hole with the mass of 20 million suns, which is streaking through the sky at tremendous speed. This likely began with two galaxies merging, each with its own supermassive black hole, which formed a binary system. Then a third galaxy got too close, and in the chaos of a three-way merger one of the black holes was kicked out and sent zipping off into space -- so fast that if it were in our solar system, it would travel from the Earth to the moon in 14 minutes.

Read more
Hubble spots an ancient pair of supermassive black holes about to merge
This artist's concept shows the brilliant glare of two quasars residing in the cores of two galaxies that are in the chaotic process of merging. The gravitational tug-of-war between the two galaxies ignites a firestorm of star birth.

The hearts of some galaxies glow so brightly that they are given a special name: Quasars. Powered by supermassive black holes at the center of these galaxies, these regions give off tremendous amounts of light as gas falls towards the black hole and heats up, resulting in a glow as powerful as over 100 billion stars. Recently, astronomers using the Hubble Space Telescope spotted two of these quasars burning brightly in the night sky -- and they're on a collision course.

The pair of quasars, known as SDSS J0749+2255, are from some of the earliest stages of the universe when it was just 3 billion years old. The two galaxies that host the quasars are in the process of merging, and eventually, the two will come together to form one enormous galaxy.

Read more
These supermassive black holes are cozying up close together
Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) to look deep into the heart of the pair of merging galaxies known as UGC 4211 discovered two black holes growing side by side, just 750 light-years apart. This artist’s conception shows the late-stage galaxy merger and its two central black holes. The binary black holes are the closest together ever observed in multiple wavelengths.

At the center of most galaxies lies a single monster: a supermassive black hole, with a mass millions or even billions of times that of the sun. These lonely beasts typically sit alone in the heart of galaxies, but recent research found two of these monsters nestled close together in the galaxy UGC4211.

The two supermassive black holes originated in two different galaxies which are now merging into one, located relatively close by at a distance of 500 million light-years from Earth. The pair is among the closest black hole binaries ever observed, sitting just 750 light-years apart, and was observed using the Atacama Large Millimeter/submillimeter Array (ALMA).

Read more