Skip to main content

Next-generation exoplanet hunter Plato goes through vacuum testing

The study of exoplanets, or planets outside our solar system, has exploded in the last decade. Thanks to missions like the Kepler Space Telescope and CHEOPS, we’ve discovered a trove of thousands of exoplanets — and the next phase in our understanding of these distant worlds is to learn more about them. Tools like the James Webb Space Telescope will study the atmospheres of exoplanets, and it will be complemented by an upcoming telescope from the European Space Agency (ESA) called Plato.

Plato is a next-generation exoplanet-hunting satellite, set for launch in 2026. To get the telescope and its systems ready for the rigors of launch and the harsh environment of space, Plato hardware is undergoing testing at ESA’s ESTEC Test Centre and at SRON, the Netherlands Institute for Space Research. Most recently, a test version of Plato’s payload module has been vacuum tested in a special vacuum chamber to ensure it can stand up to the space environment.

A test version of the payload module of ESA's exoplanet-detecting Plato spacecraft underwent a prolonged vacuum soak within Europe’s largest thermal vacuum chamber, to evaluate its endurance of space conditions.
A test version of the payload module of ESA’s exoplanet-detecting Plato spacecraft underwent a prolonged vacuum soak within Europe’s largest thermal vacuum chamber, to evaluate its endurance of space conditions. ESA-Remedia

The payload was placed into a space simulator for several weeks which recreates the extremely low pressure of space. Plato will be particularly reliant on its cameras for detecting exoplanets, with a total of 26 cameras on board, so these cameras needed to be checked in the vacuum environment as well. Over six weeks, a prototype of the camera was tested by being placed into a model of the spacecraft module called the engineering model.

“It turns out that all features of the Engineering Model function as expected,” said Lorenza Ferrari, the project manager, in a statement. “This is good news for Plato in general, and it also shows that our space simulator works extremely well.”

The next step is to check a version of all 26 cameras, which will be contained in a model called the flight model. This will check whether the cameras maintain their all-important accuracy during not only the cold conditions of space but also during the temperature variations experienced during launch.

“Located at the L2 Lagrange point, Plato (PLAnetary Transits and Oscillations of stars) will have 26 of these cameras pointing at the same target stars,” explained Yves Levillain, Plato’s Instrument System Engineer.” They will acquire images every 25 seconds — every 2.5 seconds for the two central cameras — for at least two years at a time to detect tiny shifts in brightness caused by exoplanets transiting these stars.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb investigates a super puffy exoplanet where it rains sand
Artistic concept of the exoplanet WASP-107b and its parent star. Even though the rather cool host star emits a relatively small fraction of high-energy photons, they can reach deep into the planet’s fluffy atmosphere.

Exoplanets come in many forms, from dense, rocky planets like Earth and Mars to gas giants like Jupiter and Saturn. But some planets discovered outside our solar system are even less dense than gas giants and are a type known informally as super-puff or cotton candy planets. One of the least dense exoplanets known, WASP-107b, was recently investigated using the James Webb Space Telescope (JWST) and the planet's weather seems to be as strange as its puffiness.

The planet is more atmosphere than core, with a fluffy atmosphere in which Webb spotted water vapor and sulfur dioxide. Strangest of all, Webb also saw silicate sand clouds, suggesting that it would rain sand between the upper and lower layers of the atmosphere. The planet is almost as big as Jupiter but has a tiny mass similar to that of Neptune.

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more
World’s most powerful rocket clears safety review for next test launch
SpaceX's Super Heavy and Starship.

SpaceX has taken a major step toward the second test launch of the most powerful rocket ever to fly after the Federal Aviation Administration (FAA) said it had finished its safety review, which looks at the extent to which the launch might pose a hazard to public health and nearby property.

The Super Heavy rocket and the Starship spacecraft -- collectively known as the Starship -- flew for the first time in April this year, but the uncrewed vehicle suffered an anomaly minutes after launch, which led to it exploding in midair.

Read more