Skip to main content

How James Webb will peer through a dusty cloud to study supermassive black hole

Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA's upcoming James Webb Space Telescope.
Centaurus A sports a warped central disk of gas and dust, which is evidence of a past collision and merger with another galaxy. It also has an active galactic nucleus that periodically emits jets. It is the fifth brightest galaxy in the sky and only about 13 million light-years away from Earth, making it an ideal target to study an active galactic nucleus – a supermassive black hole emitting jets and winds – with NASA’s upcoming James Webb Space Telescope. X-ray: NASA/CXC/SAO; optical: Rolf Olsen; infrared: NASA/JPL-Caltech; radio: NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

When the James Webb Space Telescope launches later this year, it’ll be the most complex space observatory in the world. Now, NASA has shared a glimpse into the kind of work that it will be able to perform in a profile of research that will be conducted on the nearby galaxy Centaurus A.

Recommended Videos

The galaxy Centaurus A is enormous and very active, with a warped central disk that was twisted out of shape when it collided with another galaxy. And its center is even more intriguing, as its supermassive black hole is spewing out jets of material with such energy that they travel beyond the bounds of the galaxy itself.

It’s this active galactic nucleus that scientists want to observe in more detail. But to do that, they need to look through the dust around the core to see the central region in more detail. That’s what the upcoming James Webb telescope will be able to do.

“There’s so much going on in Centaurus A,” explained Nora Lützgendorf, the lead researcher of the team which will study this galaxy, in a statement. “The galaxy’s gas, disk, and stars all move under the influence of its central supermassive black hole. Since the galaxy is so close to us, we’ll be able to use Webb to create two-dimensional maps to see how the gas and stars move in its central region, how they are influenced by the jets from its active galactic nucleus, and ultimately better characterize the mass of its black hole.”

To understand complex, active areas like galactic nuclei, it helps to look at them in different parts of the electromagnetic spectrum, such as X-ray and radio. Different wavelengths can detect different features, so looking across a range of wavelengths builds up a more complete picture. Webb’s infrared instruments, for example, can look through clouds of dust to see what lies beneath.

“Multi-wavelength studies of any galaxy are like the layers of an onion,” said fellow lead researcher Macarena García Marín. “Each wavelength shows you something different. With Webb’s near- and mid-infrared instruments, we’ll see far colder gas and dust than in previous observations, and learn much more about the environment at the center of the galaxy.”

Webb will be able to take not only images of this region, but also use an instrument called a spectrograph to find out the composition of the material as well. “When it comes to spectral analysis, we conduct many comparisons,” Marín said. “If I compare two spectra in this region, maybe I will find that what was observed contains a prominent population of young stars. Or confirm which areas are both dusty and heated. Or maybe we will identify emission coming from the active galactic nucleus.”

The researchers plan to create a map of this busy region, and from this map, they’ll be able to see how the gravity of the supermassive black hole affects material around it. From this, they’ll be able to more accurately pin down the black hole’s mass.

And this could be just the beginning of the discoveries. “The most exciting aspect about these observations is the potential for new discoveries,” Marín said. “I think we might find something that makes us look back to other data and reinterpret what was seen earlier.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA’s Webb telescope peers straight at Saturn-like planets 130 light-years away
Saturn captured by the James Webb Space Telescope.

The James Webb Space Telescope is NASA's most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours.

Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four "giant" planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system's 4.6 billion years of age.

Read more
James Webb captures a stunning view of the dreamy Flame Nebula
Webb's image of the Flame Nebula

Our universe is host to many beautiful and fascinating objects, and we're lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion.

This nebula is a busy stellar nursery, with many new stars being formed there. But it isn't stars which researchers were interested in when they looked to the nebula -- in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

Read more
Treasure trove of mysterious black holes uncovered by dark energy instrument
This artist’s illustration depicts a dwarf galaxy that hosts an active galactic nucleus — an actively feeding black hole. In the background are many other dwarf galaxies hosting active black holes, as well as a variety of other types of galaxies hosting intermediate-mass black holes.

There's something odd about the black holes we can detect around us, in our galaxy and beyond. It's not the fact that they devour all matter in their vicinity, or even that despite being technically invisible, they can glow brightly as the gas around their edges heats up. Those things, while strange, fit with what scientists know and understand about these extreme objects. The odd thing about black holes is the sizes they come in: either small, or very large, with very few in between.

That's puzzling because astronomers observe plenty of smaller black holes dotted throughout galaxies, called stellar mass black holes (because their masses are comparable to stars), and huge great black holes at the center of galaxies, called supermassive black holes, and it seems likely that these giant monsters must have evolved from their smaller brethren. So why don't we see evidence of these in-between size black holes?

Read more