Skip to main content

James Webb peers into icy cloud to learn about exoplanet formation

Here’s how to build an exoplanet: You start off with a star that’s surrounded by a disk of dust and gas. As the star burns and sends out gusts of stellar wind, the dust in the disk begins to interact and form into clumps. These clumps attract more dust, turning into pebbles, and then into rocks, and the gas helps these rocks stick together. They grow, picking up more and more material and clearing their orbit around the star. These are the first stage of planetary development, called planetesimals.

There’s another important ingredient for growing a planet, though: ice. In the cold clouds of dust and gas, ice forms as a kind of frost on dust grains. These icy grains carry some of the key ingredients for a potentially habitable planet, like carbon, hydrogen, and oxygen. Here on Earth, it’s thought that some of these ingredients could have been brought to our planet by icy comets, but in other systems, these ices could have been present as the exoplanets formed.

The central region of the Chameleon I dark molecular cloud.
This image by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam) features the central region of the Chameleon I dark molecular cloud, which resides 630 light years away. The cold, wispy cloud material (blue, center) is illuminated in the infrared by the glow of the young, outflowing protostar Ced 110 IRS 4 (orange, upper left). The light from numerous background stars, seen as orange dots behind the cloud, can be used to detect ices in the cloud, which absorb the starlight passing through them. NASA, ESA, CSA, and M. Zamani (ESA/Webb); Science: F. Sun (Steward Observatory), Z. Smith (Open University), and the Ice Age ERS Team.

Now, researchers using the James Webb Space Telescope have peered into the cold, dark depths of a molecular cloud to look for these ices which could form the basis for future exoplanets. Looking at a cloud of dust and gas called Chameleon I they were able to identify ices made from water as well as other molecules like ammonia and methane.

“Our results provide insights into the initial, dark chemistry stage of the formation of ice on the interstellar dust grains that will grow into the centimeter-sized pebbles from which planets form in discs,” said lead researcher Melissa McClure of Leiden Observatory in a statement. “These observations open a new window on the formation pathways for the simple and complex molecules that are needed to make the building blocks of life.”

An important finding was the identification of a complex organic molecule, methanol. Known as the building blocks of life, organic molecules are key to understanding how life may be able to develop in environments beyond Earth.

“Our identification of complex organic molecules, like methanol and potentially ethanol, also suggests that the many star and planet systems developing in this particular cloud will inherit molecules in a fairly advanced chemical state,” said another of the researchers, Will Rocha of Leiden Observatory. “This could mean that the presence of prebiotic molecules in planetary systems is a common result of star formation, rather than a unique feature of our own Solar System.”

The researchers used Webb’s high sensitivity to get spectroscopic data from the molecular cloud, located 631 light-years from Earth. They have further research planned to learn more about the role of ices in the formation of planets and their relationship to habitability.

“This is just the first in a series of spectral snapshots that we will obtain to see how the ices evolve from their initial synthesis to the comet-forming regions of protoplanetary discs,” said McClure. “This will tell us which mixture of ices — and therefore which elements — can eventually be delivered to the surfaces of terrestrial exoplanets or incorporated into the atmospheres of giant gas or ice planets.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a gorgeous stellar nursery in nearby dwarf galaxy
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. This image includes 7.7-micron light shown in blue, 10 microns in cyan, 11.3 microns in green, 15 microns in yellow, and 21 microns in red (770W, 1000W, 1130W, 1500W, and 2100W filters, respectively).

A gorgeous new image from the James Webb Space Telescope shows a stunning sight from one of our galactic neighbors. The image shows a region of star formation called NGC 346, where new stars are being born. It's located in the Small Magellanic Cloud, a dwarf galaxy that is a satellite galaxy to the Milky Way.

The star-forming region of the Small Magellanic Cloud (SMC) was previously imaged by the Hubble Space Telescope in 2005, but this new image gives a different view as it is taken in the infrared wavelength by Webb instead of the optical light wavelength used by Hubble.

Read more
Zoom into an incredibly detailed James Webb image of the Orion nebula
A short-wavelength NIRCam mosaic of the inner Orion Nebula and Trapezium Cluster.

A new image from the James Webb Space Telescope shows the majesty of the gorgeous Orion nebula in tremendous detail. The European Space Agency (ESA) has shared an extremely high-resolution version of the image that you can zoom into to see the details of this stunning cloud of dust and gas which hosts sites of star formation where new stars are being born.

The full image is available to view in the ESASky application, where you can zoom in a compare images of the same target taken in different wavelengths. There's also a very large version of the image if you want to download and pursue it at your leisure.

Read more
Swatch lets you put a stunning Webb space image on a watch face
New Swatch designs featuring images captured by the James Webb Space Telescope.

Space fans have been marveling at the stunning images beamed to Earth by the James Webb Space Telescope ever since it went into operation last year.

The most powerful space telescope ever built is using its near-infrared camera (NIRCam) to peer deeper into space than ever before, with scientists hoping that its discoveries could help unlock some of the mysteries of the universe.

Read more