Skip to main content

James Webb is ready to settle into its new home: Lagrange Point L2

The James Webb Space Telescope has been traveling through space since its launch on December 25, 2021, and will soon face the next crucial step in its mission, performing an orbital burn to insert itself into an orbit around the sun.

Webb is set to arrive at its new home on Monday: A location almost 1 million miles away called L2, or the second Sun-Earth Lagrange point. These points are places where the gravities of the sun and the Earth interact so that a small body like a spacecraft will stay in place as it moves with them. There are five of these Lagrange points, called L1 through L5, in different locations relative to the sun and the Earth. But not all of them are suitable to use as orbit.

Recommended Videos

“While all Lagrange points are gravitational balance points, not all are completely stable,” NASA representative Alise Fisher writes in an update. “L1, L2, and L3 are ‘meta-stable’ locations with saddle-shaped gravity gradients, like a point on the middle of a ridgeline between two slightly higher peaks wherein it is the low, stable point between the two peaks, but it is still a high, unstable point relative to the valleys on either side of the ridge. L4 and L5 are stable in that each location is like a shallow depression or bowl atop the middle of a long, tall ridge or hill.”

Please enable Javascript to view this content

The advantage of using the L2 location is in the way it allows the observatory to stay in the shade. The light and the heat from direct sun would cause many problems for the delicate instruments on board Webb, so the best solution is to keep them in the shade. By positioning Webb at the L2 orbit, it ensures that one side of it always faces the sun, with its giant sunshield to protect it, while the other side faces out into the cool of space. And because the observatory is moving around the sun, it can capture every piece of the sky as it travels.

The gravitational properties of L2 also make it easier for a craft to maintain an orbit, plus it has advantages for communications using NASA’s Deep Space Network. Other observatories use the L2 orbit for the same reasons, including NASA’s Wilkinson Microwave Anisotropy Probe and the European Space Agency’s Herschel Space Observatory and Planck satellite.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more