Skip to main content

Dramatic winds on Jupiter are a ‘unique meteorological beast’

This image shows an artist’s impression of winds in Jupiter’s stratosphere near the planet’s south pole, with the blue lines representing wind speeds.
This image shows an artist’s impression of winds in Jupiter’s stratosphere near the planet’s south pole, with the blue lines representing wind speeds. These lines are superimposed on a real image of Jupiter, taken by the JunoCam imager aboard NASA’s Juno spacecraft. ESO/L. Calçada & NASA/JPL-Caltech/SwRI/MSSS

Many of Jupiter’s famous features, like its distinctive stripey appearance and Great Red Spot, are due to the high winds which swirl in its atmosphere. But this isn’t a simple system: The planet’s lower and upper atmospheres both have distinct wind patterns, but researchers still aren’t sure exactly how the two interact. Now, a team has measured winds in the planet’s middle atmosphere, or stratosphere, for the first time, uncovering a dramatic system of powerful winds which could be unique in the solar system.

The reason it’s tough to measure winds in the stratosphere is that there aren’t clouds at this level, so the winds can’t be measured by cloud tracking. Instead, a team used the Atacama Large Millimeter/submillimeter Array (ALMA) to measure molecules of hydrogen cyanide that were released when a comet collided with Jupiter in 1994, and that have been floating along the stratospheric winds since.

Related Videos

They found winds of up to 900 mph near Jupiter’s poles which whipped around in narrow bands called jets. This is twice as fast as the winds in the enormous storm which forms the Great Red Spot, and three times the speed of winds in the strongest tornadoes here on Earth.

“Our detection indicates that these jets could behave like a giant vortex with a diameter of up to four times that of Earth, and some 900 kilometers [560 meters] in height,” explained co-author Bilal Benmahi of the Laboratoire d’Astrophysique de Bordeaux in a statement.

“A vortex of this size would be a unique meteorological beast in our solar system,” said lead author Thibault Cavalié.

This came as a surprise, as although strong winds have been observed high in the planet’s upper atmosphere, researchers expect that these would lessen as you go deeper into the atmosphere, and disappear altogether by the time you reach the stratosphere.

The researchers hope that this region can be studied in more detail by the upcoming JUICE mission which will be launched in 2022.

Editors' Recommendations

How the ‘hell planet’ covered in lava oceans got so close to its star
An artist’s impression of the planet Janssen (orange circle), which orbits its star so closely that its entire surface is a lava ocean that reaches temperatures of around 2,000 degrees Celsius.

Of the over 5,000 known planets outside our solar system, one of the most dramatic is 55 Cancri e. Affectionately known as the "hell planet," it orbits so close to its star that it reaches temperatures of 3,600 degrees Fahrenheit and its surface is thought to be to covered in an ocean of lava. Located 40 light-years away, the planet has been a source of fascination for its extreme conditions, and recently researchers shared a new theory for how it got so hot.

The planet orbits its star, 55 Cancri A, at a distance of 1.5 million miles which means a year there lasts less than a day here on Earth. “While the Earth completes one orbit around our sun in 365 days, the planet studied here orbits once every 17.5 hours, hugging its host star, 55 Cnc,” said study author Debra Fischer of Yale University in a statement.

Read more
Hubble reveals glow of ‘ghostly’ light around our solar system
This artist's illustration shows the location and size of a hypothetical cloud of dust surrounding our solar system. Astronomers searched through 200,000 images and made tens of thousands of measurements from Hubble Space Telescope to discover a residual background glow in the sky.

Researchers using data from the Hubble Space Telescope have made a strange discovery: a "ghostly light" surrounding our solar system. When light from stars, planets, and even the glow of starlight scattered by dust is accounted for, there's still some "extra" light observed and astronomers are trying to work out where it's coming from.

The researchers looked at 200,000 Hubble images in a project called SKYSURF, looking for any excess of light beyond that coming from know sources. And they did find a consistent, faint glow that could suggest a previously unknown structure in our solar system. One suggestion is that there could be a sphere of dust surrounding the solar system, which reflects sunlight and causes the glow.

Read more
Watch NASA’s cinematic video of the Artemis I moon mission
The moon and Earth as seen from the Orion spacecraft in November 2022.

NASA has released a cinematic video showcasing the Artemis I mission so far.

The 96-second presentation pulls together the best footage and photos captured since the mission’s launch on November 16. You can watch it below:

Read more