Skip to main content

Mars Express orbiter snaps an image of Mars’s ‘Grand Canyon’

The sights of Mars are many and marvelous — and the European Space Agency (ESA)’s Mars Express orbiter recently captured one of the planet’s wonders, the Valles Marineris canyon system.

This enormous canyon system is nearly 2,500 miles long and over 120 miles wide, and is more than 4 miles deep in places. That makes it 20 times wider and five times deeper than Arizona’s Grand Canyon, according to ESA. This gigantic size makes it the largest known canyon system in the solar system, and studying it can help researchers learn about the geological processes which formed and continue to shape Mars.

This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022.
This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022. ESA/DLR/FU Berlin

The image, taken by the High Resolution Stereo Camera (HRSC) on the Mars Express orbiter, shows two steep depressions called chasma: the Ius Chasma on the left and the Tithonium Chasma on the right. This is a true color image, meaning it shows the colors as your eye would see them, and you can see a large patch of dark dunes at the top of the image which look distinctly different from the lighter sandy-colored dunes seen elsewhere in the image. The dark sand which forms these darker dunes may have come from a nearby volcanic region called the Tharsis province.

This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and colour channels of the High Resolution Stereo Camera on ESA’s Mars Express.
This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and color channels of the High Resolution Stereo Camera on ESA’s Mars Express. ESA/DLR/FU Berlin

Another view of the Tithonium Chasmata was created from a digital model of the terrain made using data from the HRSC camera. This shows the dramatic structure of the canyon better, with large mountain-like structures which rise nearly two miles high. The patterns seen draping down from the peaks are caused by erosion, as strong winds push material down the slopes.

Recommended Videos

These enormous groves in the martian landscape are thought to have been created when tectonic plates pulled apart. Mars is not tectonically active today, and for a long time scientists thought that plate tectonics existed only on Earth. But research in the last decade has suggested that Mars was once tectonically active as well, and canyon structures like this are remnants from that time.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s Mars Odyssey Orbiter just reached a major milestone
NASA's Mars Odyssey Orbiter.

NASA's Mars Odyssey Orbiter NASA

NASA’s Mars Odyssey Orbiter is one of seven currently circling the red planet (three of them belonging to NASA), capturing imagery and performing tasks from way up to help scientists learn more about the fourth planet from the sun.

Read more
Satellite snaps remarkable image of a huge piece of space junk
A depiction of space junk in low-Earth orbit.

The space junk photographed by Astroscale's satellite shows the upper stage of a rocket that's been orbiting Earth for the last 15 years. Astroscale

Orbital debris removal company Astroscale has shared a remarkable image captured by the Active Debris Removal by Astroscale-Japan (ADRAS-J) satellite.

Read more
Auroras and radiation from solar storms spotted on Mars
The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.

The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here. NASA/JPL-Caltech

The recent solar storms caused epic events here on Earth, where auroras were visible across much of the globe last month. These storms, caused by heightened activity from the sun, don't only affect our planet though -- they also affect Mars. NASA missions like the Curiosity rover have been observing the effects of solar storms there, where the very thin atmosphere creates a potentially dangerous radiation environment. If we ever want to send people to visit the red planet, we're going to need to learn more about this radiation and how it's affected by events like solar storms.

Read more