Skip to main content

Mars Express orbiter snaps an image of Mars’s ‘Grand Canyon’

The sights of Mars are many and marvelous — and the European Space Agency (ESA)’s Mars Express orbiter recently captured one of the planet’s wonders, the Valles Marineris canyon system.

This enormous canyon system is nearly 2,500 miles long and over 120 miles wide, and is more than 4 miles deep in places. That makes it 20 times wider and five times deeper than Arizona’s Grand Canyon, according to ESA. This gigantic size makes it the largest known canyon system in the solar system, and studying it can help researchers learn about the geological processes which formed and continue to shape Mars.

This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022.
This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022. ESA/DLR/FU Berlin

The image, taken by the High Resolution Stereo Camera (HRSC) on the Mars Express orbiter, shows two steep depressions called chasma: the Ius Chasma on the left and the Tithonium Chasma on the right. This is a true color image, meaning it shows the colors as your eye would see them, and you can see a large patch of dark dunes at the top of the image which look distinctly different from the lighter sandy-colored dunes seen elsewhere in the image. The dark sand which forms these darker dunes may have come from a nearby volcanic region called the Tharsis province.

This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and colour channels of the High Resolution Stereo Camera on ESA’s Mars Express.
This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and color channels of the High Resolution Stereo Camera on ESA’s Mars Express. ESA/DLR/FU Berlin

Another view of the Tithonium Chasmata was created from a digital model of the terrain made using data from the HRSC camera. This shows the dramatic structure of the canyon better, with large mountain-like structures which rise nearly two miles high. The patterns seen draping down from the peaks are caused by erosion, as strong winds push material down the slopes.

These enormous groves in the martian landscape are thought to have been created when tectonic plates pulled apart. Mars is not tectonically active today, and for a long time scientists thought that plate tectonics existed only on Earth. But research in the last decade has suggested that Mars was once tectonically active as well, and canyon structures like this are remnants from that time.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble snaps an image of dark spokes in Saturn’s rings
This photo of Saturn was taken by NASA's Hubble Space Telescope on October 22, 2023, when the ringed planet was approximately 850 million miles from Earth. Hubble's ultra-sharp vision reveals a phenomenon called ring spokes. Saturn's spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.

The Hubble Space Telescope is investigating something strange about the beautiful rings around Saturn. You might picture Saturn's rings as perfectly smooth, but in fact, they have some strange dark spots that appear intermittently. These features, called spokes, look like dusty blots spread over the rings and appear for just a few rotations before disappearing again, with some periods having much more spoke activity than others.

These spokes were first observed over 40 years ago by the Voyager 2 spacecraft, but they continue to be something of a mystery. They seem to be linked to seasons on the planet, which are seven years long, and to the planet's magnetic field. A newly released image taken by Hubble in October this year shows the spokes as dark patches on the rings, observed as part of a program called Hubble's Outer Planets Atmospheres Legacy (OPAL), which tracks them as they move.

Read more
See the passing of a day on Mars with the Curiosity rover
Curiosity rover

While many of us are on vacation this week between Christmas and New Year, the Curiosity rover on Mars is getting back to work after taking time off last month. In November, NASA's Mars missions paused for two weeks during an event called the Mars solar conjunction, when the sun is directly between Earth and Mars.

That means that any communications signals passing between the two planets would have to pass close to the harsh solar environment, where they would likely be degraded. To avoid any risk of garbled communications sending dangerous signals to the rovers, NASA stopped sending commands to both its Curiosity and Perseverance rovers until the solar conjunction passed.

Read more
Mars Odyssey spacecraft pulls a sideways maneuver to capture the planet’s horizon
NASA Orbiter Snaps Stunning Views of Mars Horizon

A new image from a NASA orbiter shows an unusual view of Mars that captures the planet's horizon complete with clouds. It is similar to the kinds of views of Earth that astronauts get from the International Space Station, showing what Mars would look like if seen from a similar vantage point.

The image was taken by NASA's Mars Odyssey spacecraft, which has been orbiting the planet since 2001. In its over 20 years of operations, the orbiter made key discoveries, including some of the first detections of subsurface ice on the planet. It has also created a global map of the planet's surface using its Thermal Emission Imaging System (THEMIS) instrument.

Read more