Skip to main content

Astronomers spot a new planet orbiting our neighboring star

At just over four light-years away, the low-mass star Proxima Centauri is practically next door to us, cosmically speaking. It is known to host two exoplanets, but recent research using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) has shown that these two planets may have a baby brother, in the form of one of the lightest exoplanets ever found.

The newly discovered planet, called Proxima d, orbits extremely close to its star at just 2.5 million miles away — less than one-tenth of the distance between Mercury and the sun. It is so close that it takes just five days to complete an orbit, meaning it is too close to be in the habitable zone (where liquid water could be present on its surface).

This artist’s impression shows a close-up view of Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System.
This artist’s impression shows a close-up view of Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. ESO/L. Calçada

The planet is just a quarter of Earth’s mass, making it extremely light by exoplanet standards. “The discovery shows that our closest stellar neighbor seems to be packed with interesting new worlds, within reach of further study and future exploration,” said lead author of the study João Faria in a statement.

Recommended Videos

The tiny mass of the exoplanet made it hard to spot, so after initial observations with the ESO’s 3.6-meter telescope, the researchers turned to the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) instrument on the VLT. “After obtaining new observations, we were able to confirm this signal as a new planet candidate,” Faria says. “I was excited by the challenge of detecting such a small signal and, by doing so, discovering an exoplanet so close to Earth.”

Please enable Javascript to view this content

Many exoplanets are discovered using the transit method, in which astronomers look for small dips in the brightness of a star caused when a planet passes between the star and us. But this exoplanet was discovered using a different method called the radial velocity technique, looking for tiny wobbles in the movements of a star caused by the gravity of a passing planet. Because the gravitational wobble caused by a light planet like Proxima d is so small, traditionally the radial velocity method has been used primarily to search for larger planets.

“This achievement is extremely important,” said Pedro Figueira, ESPRESSO instrument scientist at ESO in Chile. “It shows that the radial velocity technique has the potential to unveil a population of light planets, like our own, that are expected to be the most abundant in our galaxy and that can potentially host life as we know it.”

The research is published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
NASA says goodbye to our planetary protector, the asteroid-spotting NEOWISE mission
This artist’s concept depicts the NEOWISE spacecraft in orbit around Earth. Launched in 2009 to survey the entire sky in infrared, the spacecraft took on a more specialized role in 2014 when it was reactivated to study near-Earth asteroids and comets.

Fifteen years after a launch that was intended to begin just a seven month mission, NASA's NEOWISE spacecraft has finally shut down. The Near-Earth Object Wide-field Infrared Survey Explorer spacecraft surveyed the sky spotting thousands of asteroids within our solar system, and made discoveries such as a striking comet that as named after it. The spacecraft has made years of scientific observations, but with its orbit slowly dropping, it has now been decommissioned and will burn up harmlessly in the atmosphere later this year.

NEOWISE was a remarkable mission for several reasons, one of which was that it was never intended to be an asteroid observation mission at all. It was originally launched as WISE, the Wide-field Infrared Survey Explorer, and looked at distant objects like galaxies in the infrared. Its original mission was successful and so was extended, but within a couple of years the spacecraft had used up the coolant required for some of its detectors and it was put into hibernation.

Read more
This extreme exoplanet has a highly unusual orbit
This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. Using the WIYN 3.5-meter telescope at the U.S. National Science Foundation Kitt Peak National Observatory, a Program of NSF NOIRLab, a team of astronomers found that this exoplanet, named TIC 241249530 b, follows an extremely elliptical orbit in the direction opposite to the rotation of its host star.

This artist’s impression shows a Jupiter-like exoplanet that is on its way to becoming a hot Jupiter — a large, Jupiter-like exoplanet that orbits very close to its star. NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

Exoplanets come in all sorts of shapes and sizes, and can be weird in all sorts of ways. There are football shaped exoplanets and exoplanets where it rains gemstones; ones with the density of cotton candy and ones with one lava hemisphere. But new research has uncovered an exoplanet called TIC 241249530 b which is unusual in a different sort of way, as it has one of the most extreme orbits discovered to date.

Read more