Skip to main content

Two asteroids whipped past Earth last week, and researchers snapped images

The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29.
The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29. NASA/JPL-Caltech

The last week saw not one but two asteroids whip by Earth at close distances — not so close as to threaten the planet, but close enough for scientists to get a good view of them. Asteroid hunters tracked the pair as they passed by, and they were even imaged by NASA instruments to learn more about asteroids, including those that could potentially threaten Earth in the future.

Recommended Videos

Asteroids 2024 MK and 2011 UL21, named for their respective years of discovery, made close approaches to Earth on June 27 and June 29. Asteroid 2011 UL21 came within 4.1 million miles of the planet, and was nearly a mile wide — big and close enough to classify it as a potentially hazardous object. However, using data about its orbit, astronomers have run the numbers and determined there’s no chance of it impacting the Earth any time soon.

While the asteroid was passing by, it was being observed by astronomers. NASA scientists used one of the radars of its Deep Space Network (the network NASA uses to communicate with its spacecraft in deep space) to bounce radio waves off the asteroid and study it. They found that it is actually part of a pair called a binary system, with a tiny moonlet orbiting it at a distance of around 2 miles.

“It is thought that about two-thirds of asteroids of this size are binary systems, and their discovery is particularly important because we can use measurements of their relative positions to estimate their mutual orbits, masses, and densities, which provide key information about how they may have formed,” said Lance Benner, principal scientist at NASA’s Jet Propulsion Laboratory who helped lead the observations.

The second asteroid that passed by came even closer, at 184,000 miles from the planet, which is closer that the moon is. It was smaller, at around 500 feet across, and was a long and angular shape. Researchers used a similar method of bouncing radio waves off the asteroid to observe its jagged, complex surface. They were able to get a close-up view of the object, which is rare as it came so close.

“This was an extraordinary opportunity to investigate the physical properties and obtain detailed images of a near-Earth asteroid,” Benner said.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more
NASA orbiter captures one last image of retired InSight lander on Mars
This illustration shows NASA's InSight spacecraft with its instruments deployed on the Martian surface.

NASA's Insight lander spent four years on the surface of Mars, uncovering secrets of the planet's interior, but it eventually succumbed to the most martian of environmental threats: dust. Mars has periodic dust storms that can whip up into huge global events, lifting dust up into the air and then dumping it on everything in sight -- including solar panels. After years of accumulation, eventually the dust was so thick that Insight's solar panels could no longer generate enough power to keep it operational, and the mission officially came to an end in December 2022.

That wasn't quite the end of the story for InSight, though, as it is still being used for science to this day, albeit indirectly. Recently, the Mars Reconnaissance Orbiter (MRO) caught a glimpse of InSight from orbit, capturing the lander's dusty surroundings and showing how even more dust had built up on it.

Read more
Webb and Hubble snap the same object for two views of one galaxy
Featured in this NASA/ESA/CSA James Webb Space Telescope Picture of the Month is the spiral galaxy NGC 2090, located in the constellation Columba. This combination of data from Webb’s MIRI and NIRCam instruments shows the galaxy’s two winding spiral arms and the swirling gas and dust of its disc in magnificent and unique detail.

With all the excitement over the last few years for the shiny and new James Webb Space Telescope, it's easy to forget about the grand old master of the space telescopes, Hubble. But although Webb is a successor to Hubble in some ways, with newer technology and the ability to see the universe in even greater detail, it isn't a replacement. A pair of new images shows why: with the same galaxy captured by both Webb and Hubble, you can see the different details picked out by each telescope and why having both of them together is such a great boon for scientists.

The galaxy NGC 2090 was imaged by Webb, shown above, using its MIRI and NIRCam instruments. These instruments operate in the mid-infrared and near-infrared portions of the electromagnetic spectrum respectively, which is why the arms of this galaxy appear to be glowing red. These arms are made of swirling gas and dust, and within them are compounds called polycyclic aromatic hydrocarbons that glow brightly in the infrared. The blue color in the center of the galaxy shows a region of young stars burning hot and bright.

Read more