Skip to main content

Hubble Space Telescope finds destructive white dwarf ripping apart planetary pieces

When stars run out of fuel and come to the end of their lives, the biggest ones explode in huge supernovas. But smaller stars go through a different change in which they throw off portions of their mass, creating a planetary nebula around them and leaving a small, dense core called a white dwarf. Like the majority of stars, our sun will eventually become a white dwarf, glowing with residual heat but no longer producing energy through fusion.

Dead Star Caught Ripping Up Planetary System

Even though it is no longer active in terms of fusion, a white dwarf is still a formidable beast. Because the remnant of the star collapses down to a small core it is extremely dense, and the gravity of this core can wreak havoc on the objects around it. Recently, the Hubble Space Telescope uncovered a case of cosmic cannibalism, with a white dwarf consuming rocky and icy material from its surrounding environment.

Illustration showing a white dwarf star siphoning off debris from shattered objects in a planetary system.
This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. The Hubble Space Telescope detects the spectral signature of the vaporized debris that revealed a combination of rocky-metallic and icy material, the ingredients of planets. The findings help describe the violent nature of evolved planetary systems and the composition of their disintegrating bodies. NASA, ESA, Joseph Olmsted (STScI)

The white dwarf, called G238-44, is the first one that has been observed accreting both rocky-metallic material and icy material, which is important as these are the key components from which planets are formed. Studying this white dwarf could therefore help researchers to learn about how planetary systems form.

Recommended Videos

Scientists know that when stars puff up to become red giants before shedding their mass and becoming white dwarfs, they dramatically impact any planets in their vicinity. And because the white dwarf studied by Hubble is pulling in matter related to planetary formation, including elements like nitrogen, oxygen, magnesium, silicon, and iron, the researchers can observe the mix of elements that would have gone into planets when they first formed.

Please enable Javascript to view this content

In addition, the fact that the white dwarf is attracting icy bodies suggests that comets could be common in planetary systems, which supports the theory that water could have been brought to the early Earth by a comet or asteroid.

“Life as we know it requires a rocky planet covered with a variety of elements like carbon, nitrogen, and oxygen,” said one of the researchers, Benjamin Zuckerman, in a statement. “The abundances of the elements we see on this white dwarf appear to require both a rocky and a volatile-rich parent body – the first example we’ve found among studies of hundreds of white dwarfs.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
Hubble Space Telescope is back up and running following gyro problem
Hubble orbiting more than 300 miles above Earth as seen from the space shuttle.

The Hubble Space Telescope is back to full operations after spending several weeks in safe mode due to a problem with one of its components. The telescope first experienced issues with one of its gyros on November 19, and was in and out of safe mode several times in the following days. It has remained in safe mode since November 23, but came back online on Friday, December 8.

The problem was caused by one of the telescope's three operational gyros, which are devices that help to point the telescope in the right direction. Although it would have been possible to operate the telescope with just one of these, that would have resulted in lost observing time as it would take longer to move the telescope to a new target between observations. With all three gyros now back in use, the telescope has returned to science operations.

Read more
NASA will try bringing the Hubble telescope back online on Friday
The Hubble Space Telescope orbits Earth.

The Hubble Space Telescope recently suffered a glitch that made it go into safe mode, so it has not been collecting new science data since November 23. But on Friday, December 8, NASA will attempt to get the telescope up and running again by tweaking the operation of one of its three gyros.

The gyros are responsible for keeping the telescope pointed in the right direction, and an error in one of them put the telescope into safe mode to prevent any damage occurring to its hardware. Although it is theoretically possible for the telescope to operate with just one gyro, this would be less efficient and observing time would be lost as it would take longer for the telescope to switch between targets. So ideally, all three gyros can be operational.

Read more