Skip to main content

Computers that calculate data at the speed of light could arrive as early as 2020

mit researchers show off supercomputer that treats nand storage like ram supercomputer2
Image used with permission by copyright holder
Most folks know that data travels at much higher speeds and capacities over optical cables than it can over copper equivalents. A prime example is the tremendous transfer speeds available on fiber optic networks, as opposed to copper POTS (plain old telephone service) lines. We’re talking thousands, even millions more times the data.

Related: How much faster will computers with 8-core processors and DDR4 RAM be?

If you think about it, there’s no reason that the technology (or something similar) that allows us to move massive data around from Point A to Point B shouldn’t help speed up our computers too.

Related: A beginner’s guide to Tor

To that end, an English technology company dubbed Optalysys says that in January 2015, it will demonstrate a prototype optical computer that performs calculations at the speed of light. If all goes well, the company says that we will see exascale supercomputers as early as 2020.

What is an optical computer?

The term optical computing can refer to many different types of technologies. Basically, it refers to computers that use light, rather than electricity, to perform many of its tasks.

While Optalysys’ approach, which employs low-power lasers and a huge liquid crystal grid, is much different from most other competing optical-based models, the company’s results are very promising so far.

While highly complicated, the Optalysys approach projects low-power lasers onto the liquid crystal grid, which in turn initiates reactions within the grid. This generates sophisticated algorithms, accommodating thousands, even millions of calculations simultaneously. By using multiple grids, either in sequence or in parallel, you can significantly increase capacity and processing power.

In addition to providing massive computing oomph, the Optalysys’ system consumes very little power.

The company provided the following statistic to demonstrate the incredible savings in electricity: An optical computer will use roughly $3,500 worth of electricity each year, while today’s most powerful supercomputer, when running at its peak power of 34 petaflops per second, sucks juice at an annual cost of about $21 million.

What could a company do with those kinds of power savings? The truth is that very few companies (Perhaps Google, Microsoft, Amazon, and so on) require supercomputers with that kind of processing oomph. Most of us, on the other hand, would have little use for anywhere close to that kind of computing power.

Still, in addition to reducing the power bill literally by millions, optical computers should also decrease the size of supercomputers themselves drastically, thereby reducing space requirements and a slew of other expenses associated with housing humongous machines. The ability to deliver supercomputer power in a desktop-size machine opens up possibilities in all kinds of areas, including medicine, digital video and other media editing, 3D modeling, CAD—the list goes on and on.

If and when optical computers go mainstream, imagine what such a desktop machine would be capable of.

When will we see optical computers?

According to Optalysys, its optical computing technology has already met the NASA Technology Readiness Level (TRL) 4. This means that it’s ready for full-scale lab testing.

As mentioned, the company says that we’ll see a prototype by January 2015, and that it hopes to have two commercial demo systems up and running by 2017.

A big data analysis system for augmenting conventional supercomputers, and a standalone “Optical Solver” supercomputer that, a company spokesman says, should start at 9 petaflops, with it scaling up to 17.1 exaflops could arrive by 2020.

However, while the technology itself seems sound, Optalysys is just getting started. With this in mind, the 2020 time frame seems ambitious.

If all works out as planned though, the next bunch of years could see some freakishly powerful computers.

William Harrel
William Harrel has been writing about computer technology for well over 25 years. He has authored or coauthored 20…
4 CPUs you should buy instead of the Ryzen 7 7800X3D
AMD Ryzen 7 7800X3D sitting on a motherboard.

The Ryzen 7 7800X3D is one of the best gaming processors you can buy, and it's easy to see why. It's easily the fastest gaming CPU on the market, it's reasonably priced, and it's available on a platform that AMD says it will support for several years. But it's not the right chip for everyone.

Although the Ryzen 7 7800X3D ticks all the right boxes, there are several alternatives available. Some are cheaper while still offering great performance, while others are more powerful in applications outside of gaming. The Ryzen 7 7800X3D is a great CPU, but if you want to do a little more shopping, these are the other processors you should consider.
AMD Ryzen 7 5800X3D

Read more
Even the new mid-tier Snapdragon X Plus beats Apple’s M3
A photo of the Snapdragon X Plus CPU in the die

You might have already heard of the Snapdragon X Elite, the upcoming chips from Qualcomm that everyone's excited about. They're not out yet, but Qualcomm is already announcing another configuration to live alongside it: the Snapdragon X Plus.

The Snapdragon X Plus is pretty similar to the flagship Snapdragon X Elite in terms of everyday performance but, as a new chip tier, aims to bring AI capabilities to a wider portfolio of ARM-powered laptops. To be clear, though, this one is a step down from the flagship Snapdragon X Elite, in the same way that an Intel Core Ultra 7 is a step down from Core Ultra 9.

Read more
Gigabyte just confirmed AMD’s Ryzen 9000 CPUs
Pads on the AMD Ryzen 7 7800X3D.

Gigabyte spoiled AMD's surprise a bit by confirming the company's next-gen CPUs. In a press release announcing a new BIOS for X670, B650, and A620 motherboards, Gigabyte not only confirmed that support has been added for next-gen AMD CPUs, but specifically referred to them as "AMD Ryzen 9000 series processors."

We've already seen MSI and Asus add support for next-gen AMD CPUs through BIOS updates, but neither of them called the CPUs Ryzen 9000. They didn't put out a dedicated press release for the updates, either. It should go without saying, but we don't often see a press release for new BIOS versions, suggesting Gigabyte wanted to make a splash with its support.

Read more